Research Article
PDF EndNote BibTex RIS Cite

Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas Sequences

Year 2023, Volume 27, Issue 1, 1 - 13, 28.02.2023
https://doi.org/10.16984/saufenbilder.1148618

Abstract

In this paper, we define bi-periodic (p,q)-Fibonacci and bi-periodic (p,q)-Lucas sequences, which generalize Fibonacci type, Lucas type, bi-periodic Fibonacci type and bi-periodic Lucas type sequences, using recurrence relations of (p,q)-Fibonacci and (p,q)-Lucas sequences. Generating functions and Binet formulas that allow us to calculate the nth terms of these sequences are given and the convergence properties of their consecutive terms are examined. Also, we prove some fundamental identities of bi-periodic (p,q)-Fibonacci and bi-periodic (p,q)-Lucas sequences conform to the well-known properties of Fibonacci and Lucas sequences.

References

  • [1] A. F. Horadam, “A Generalized Fibonacci Sequence,” The American Mathematical Monthly, vol. 68, no. 5, pp. 455-459, 1961.
  • [2] S. Falcon, A. Plaza, “On the Fibonacci k-Numbers,” Chaos, Solitons & Fractals, vol. 32, no. 5, pp. 1615-24, 2007.
  • [3] S. Falcon, “On the k-Lucas Numbers,” International Journal of Contemporary Mathematical Sciences, vol. 6, no. 21, pp. 1039-1050, 2011.
  • [4] T. Koshy, “Fibonacci and Lucas Numbers with Applications,” vol. 1, 2nd Edition, Wiley-Interscience Publications, New York, 2017, 704p.
  • [5] Y. Taşyurdu, N. Çobanoğlu, Z. Dilmen, “On the a New Family of k-Fibonacci Numbers,” Erzincan University Journal of Science and Technology, vol. 9 no. 1, pp. 95-101, 2016.
  • [6] Y. K. Panwar, “A Note on the Generalized k-Fibonacci Sequence,” MTU Journal of Engineering and Natural Sciences, vol. 2, no. 2, pp. 29-39, 2021.
  • [7] O. Deveci, Y. Aküzüm, “The Recurrence Sequences via Hurwitz Matrices,” Annals of the Alexandru Ioan Cuza University-Mathematics, vol. 63, no. 3, pp. 1-13, 2017.
  • [8] A. F. Horadam, “Basic Properties of a Certain Generalized Sequence of Numbers,” Fibonacci Quarterly, vol. 3, no. 3, 161–176, 1965.
  • [9] A. Suvarnamani, M. Tatong, “Some Properties of (p,q)-Fibonacci Numbers,” Science and Technology RMUTT Journal, vol. 5, no. 2, pp. 17-21, 2015.
  • [10] A. Suvarnamani, “Some Properties of (p,q)-Lucas Number,” Kyungpook Mathematical Journal, vol. 56, pp. 367-370, 2016.
  • [11] Y. Taşyurdu, “Generalized (p,q)-Fibonacci-Like Sequences and Their Properties,” Journal of Mathematics Research, vol. 11, no. 6, pp. 43-52, 2019.
  • [12] M. Edson, O. Yayenie, “A New Generalization of Fibonacci Sequence & Extended Binet’s Formula,” Integers, vol. 9, pp. 639–654, 2009.
  • [13] G. Bilgici, “Two Generalizations of Lucas Sequence,” Applied Mathematics and Computation, vol. 245, pp. 526–538, 2014.
  • [14] O. Yayenie, “A Note on Generalized Fibonacci Sequence,” Applied Mathematics and Computation, vol. 217, pp. 5603-5611, 2011.
  • [15] S. P. Jun, K. H. Choi, “Some Properties of the Generalized Fibonacci Sequence {q_n } by Matrix Methods,” Korean Journal Mathematics., vol. 24, no. 4, pp. 681-691, 2016.
  • [16] E. Tan, “Some Properties of the bi-Periodic Horadam Sequences,” Notes on Number Theory and Discrete Mathematics, vol. 23, no. 4, pp. 56-65, 2017.
  • [17] Ş. Uygun, E. Owusu, “A New Generalization of Jacobsthal Numbers (Bi-Periodic Jacobsthal Sequence),” Journal of Mathematical Analysis, vol. 7 no. 4, pp. 28-39, 2016.
  • [18] Ş. Uygun, E. Owusu, “A New Generalization of Jacobsthal Lucas Numbers (Bi-Periodic Jacobsthal Lucas Sequence),” Journal of Advances in Mathematics and Computer Science, vol. 34, no. 5, pp. 1-13, 2019.
  • [19] Ş. Uygun, H. Karatas, “Bi-Periodic Pell Sequence,” Academic Journal of Applied Mathematical Sciences, vol. 6 no. 7, pp. 136-144, 2020.
  • [20] Ş. Uygun, H. Karatas, “A New Generalization of Pell-Lucas Numbers (Bi-Periodic Pell-Lucas Sequence),” Communications in Mathematics and Applications, vol. 10, no. 3, pp. 469-479, 2019.

Year 2023, Volume 27, Issue 1, 1 - 13, 28.02.2023
https://doi.org/10.16984/saufenbilder.1148618

Abstract

References

  • [1] A. F. Horadam, “A Generalized Fibonacci Sequence,” The American Mathematical Monthly, vol. 68, no. 5, pp. 455-459, 1961.
  • [2] S. Falcon, A. Plaza, “On the Fibonacci k-Numbers,” Chaos, Solitons & Fractals, vol. 32, no. 5, pp. 1615-24, 2007.
  • [3] S. Falcon, “On the k-Lucas Numbers,” International Journal of Contemporary Mathematical Sciences, vol. 6, no. 21, pp. 1039-1050, 2011.
  • [4] T. Koshy, “Fibonacci and Lucas Numbers with Applications,” vol. 1, 2nd Edition, Wiley-Interscience Publications, New York, 2017, 704p.
  • [5] Y. Taşyurdu, N. Çobanoğlu, Z. Dilmen, “On the a New Family of k-Fibonacci Numbers,” Erzincan University Journal of Science and Technology, vol. 9 no. 1, pp. 95-101, 2016.
  • [6] Y. K. Panwar, “A Note on the Generalized k-Fibonacci Sequence,” MTU Journal of Engineering and Natural Sciences, vol. 2, no. 2, pp. 29-39, 2021.
  • [7] O. Deveci, Y. Aküzüm, “The Recurrence Sequences via Hurwitz Matrices,” Annals of the Alexandru Ioan Cuza University-Mathematics, vol. 63, no. 3, pp. 1-13, 2017.
  • [8] A. F. Horadam, “Basic Properties of a Certain Generalized Sequence of Numbers,” Fibonacci Quarterly, vol. 3, no. 3, 161–176, 1965.
  • [9] A. Suvarnamani, M. Tatong, “Some Properties of (p,q)-Fibonacci Numbers,” Science and Technology RMUTT Journal, vol. 5, no. 2, pp. 17-21, 2015.
  • [10] A. Suvarnamani, “Some Properties of (p,q)-Lucas Number,” Kyungpook Mathematical Journal, vol. 56, pp. 367-370, 2016.
  • [11] Y. Taşyurdu, “Generalized (p,q)-Fibonacci-Like Sequences and Their Properties,” Journal of Mathematics Research, vol. 11, no. 6, pp. 43-52, 2019.
  • [12] M. Edson, O. Yayenie, “A New Generalization of Fibonacci Sequence & Extended Binet’s Formula,” Integers, vol. 9, pp. 639–654, 2009.
  • [13] G. Bilgici, “Two Generalizations of Lucas Sequence,” Applied Mathematics and Computation, vol. 245, pp. 526–538, 2014.
  • [14] O. Yayenie, “A Note on Generalized Fibonacci Sequence,” Applied Mathematics and Computation, vol. 217, pp. 5603-5611, 2011.
  • [15] S. P. Jun, K. H. Choi, “Some Properties of the Generalized Fibonacci Sequence {q_n } by Matrix Methods,” Korean Journal Mathematics., vol. 24, no. 4, pp. 681-691, 2016.
  • [16] E. Tan, “Some Properties of the bi-Periodic Horadam Sequences,” Notes on Number Theory and Discrete Mathematics, vol. 23, no. 4, pp. 56-65, 2017.
  • [17] Ş. Uygun, E. Owusu, “A New Generalization of Jacobsthal Numbers (Bi-Periodic Jacobsthal Sequence),” Journal of Mathematical Analysis, vol. 7 no. 4, pp. 28-39, 2016.
  • [18] Ş. Uygun, E. Owusu, “A New Generalization of Jacobsthal Lucas Numbers (Bi-Periodic Jacobsthal Lucas Sequence),” Journal of Advances in Mathematics and Computer Science, vol. 34, no. 5, pp. 1-13, 2019.
  • [19] Ş. Uygun, H. Karatas, “Bi-Periodic Pell Sequence,” Academic Journal of Applied Mathematical Sciences, vol. 6 no. 7, pp. 136-144, 2020.
  • [20] Ş. Uygun, H. Karatas, “A New Generalization of Pell-Lucas Numbers (Bi-Periodic Pell-Lucas Sequence),” Communications in Mathematics and Applications, vol. 10, no. 3, pp. 469-479, 2019.

Details

Primary Language English
Subjects Mathematics
Journal Section Research Articles
Authors

Yasemin TAŞYURDU> (Primary Author)
ERZINCAN BINALI YILDIRIM UNIVERSITY
0000-0002-9011-8269
Türkiye


Naime Şeyda TÜRKOĞLU>
ERZINCAN BINALI YILDIRIM UNIVERSITY
0000-0003-2301-3958
Türkiye

Publication Date February 28, 2023
Submission Date July 25, 2022
Acceptance Date October 30, 2022
Published in Issue Year 2023, Volume 27, Issue 1

Cite

Bibtex @research article { saufenbilder1148618, journal = {Sakarya University Journal of Science}, eissn = {2147-835X}, address = {}, publisher = {Sakarya University}, year = {2023}, volume = {27}, number = {1}, pages = {1 - 13}, doi = {10.16984/saufenbilder.1148618}, title = {Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas Sequences}, key = {cite}, author = {Taşyurdu, Yasemin and Türkoğlu, Naime Şeyda} }
APA Taşyurdu, Y. & Türkoğlu, N. Ş. (2023). Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas Sequences . Sakarya University Journal of Science , 27 (1) , 1-13 . DOI: 10.16984/saufenbilder.1148618
MLA Taşyurdu, Y. , Türkoğlu, N. Ş. "Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas Sequences" . Sakarya University Journal of Science 27 (2023 ): 1-13 <https://dergipark.org.tr/en/pub/saufenbilder/issue/75859/1148618>
Chicago Taşyurdu, Y. , Türkoğlu, N. Ş. "Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas Sequences". Sakarya University Journal of Science 27 (2023 ): 1-13
RIS TY - JOUR T1 - Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas Sequences AU - YaseminTaşyurdu, Naime ŞeydaTürkoğlu Y1 - 2023 PY - 2023 N1 - doi: 10.16984/saufenbilder.1148618 DO - 10.16984/saufenbilder.1148618 T2 - Sakarya University Journal of Science JF - Journal JO - JOR SP - 1 EP - 13 VL - 27 IS - 1 SN - -2147-835X M3 - doi: 10.16984/saufenbilder.1148618 UR - https://doi.org/10.16984/saufenbilder.1148618 Y2 - 2022 ER -
EndNote %0 Sakarya University Journal of Science Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas Sequences %A Yasemin Taşyurdu , Naime Şeyda Türkoğlu %T Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas Sequences %D 2023 %J Sakarya University Journal of Science %P -2147-835X %V 27 %N 1 %R doi: 10.16984/saufenbilder.1148618 %U 10.16984/saufenbilder.1148618
ISNAD Taşyurdu, Yasemin , Türkoğlu, Naime Şeyda . "Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas Sequences". Sakarya University Journal of Science 27 / 1 (February 2023): 1-13 . https://doi.org/10.16984/saufenbilder.1148618
AMA Taşyurdu Y. , Türkoğlu N. Ş. Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas Sequences. SAUJS. 2023; 27(1): 1-13.
Vancouver Taşyurdu Y. , Türkoğlu N. Ş. Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas Sequences. Sakarya University Journal of Science. 2023; 27(1): 1-13.
IEEE Y. Taşyurdu and N. Ş. Türkoğlu , "Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas Sequences", Sakarya University Journal of Science, vol. 27, no. 1, pp. 1-13, Feb. 2023, doi:10.16984/saufenbilder.1148618

Sakarya University Journal of Science (SAUJS)