With the developments in treatment technologies, including porous materials in electrochemical systems have recently become the focus of researchers' attention. In electrochemical methods, operating cost is as important as efficiency. It is possible to increase the system performance by increasing the effective electrode surface by incorporating activated carbon, which can be produced from biomass, into electrochemical oxidation systems. This study investigated using activated carbon from walnut shells as a microelectrode in the electrochemical oxidative degradation of malachite green. When potential differences between 2V and 4V are applied to 2DES and 3DES reactors containing MG solution, a higher % MG Removal was obtained in 3DES reactors than in 2DES reactors. When the potential difference is 4V, a value of 0.026 (min-1) k1.3D and 0.0117 (min-1) k1.2D are obtained. In 3DES reactors, the rate constant at 0.003 A/cm2 was achieved as 0.0167 (min-1) k1.3D, while at 0.010 A/cm2, it increased by approximately 5 times, reaching a value of 0.0845 min-1 k1.3D. Similarly, in 3DES reactors, when the current density increased from 0.003 A/cm2 to 0.010 A/cm2, the mass transfer rate increased from 0.011 (cm/s) to 0.05633 (cm/s).
Electrochemical Oxidative Degradation Microelectrodes Malachite Green
Birincil Dil | İngilizce |
---|---|
Konular | Kimya Mühendisliği |
Bölüm | Araştırma Makalesi |
Yazarlar | |
Erken Görünüm Tarihi | 27 Şubat 2024 |
Yayımlanma Tarihi | 29 Şubat 2024 |
Gönderilme Tarihi | 14 Mayıs 2023 |
Kabul Tarihi | 21 Kasım 2023 |
Yayımlandığı Sayı | Yıl 2024 Cilt: 28 Sayı: 1 |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.