Research Article
BibTex RIS Cite

Semiconducting Characteristic of Antiferromagnetic Al4X3Mn (X = P, As and Sb) Compounds with Ab Initio Simulation Methods

Year 2024, Volume: 28 Issue: 2, 326 - 332, 30.04.2024
https://doi.org/10.16984/saufenbilder.1339685

Abstract

This research reports the electronic characteristics of ternary aluminium-based Al4X3Mn (X=P, As and Sb) compounds for the most stable magnetic order which is A-type antiferromagnetic. The related systems are comforming 215 space number with P-43m space group which is simple cubic crystal structure. The computations in this research have been done within the framework of Density Functional Theory. The calculations utilized Perdew-Burke-Ernzerhof type correlation functionals within the meta-generalized gradient approximation. For considered four different type magnetic orders, the visualized volume-energy plots and the calculated formation energy values imply that the magnetic nature of these compositions is A-type antiferromagnetic. Besides, the investigated electronic natures in the detected stable magnetic phase of these systems are semiconductor since the band gaps were observed in their electronic band structures and density of states (Eg = 0.36 eV for Al4P3Mn, Eg = 0.33 eV for Al4As3Mn, and Eg = 0.18 eV for Al4Sb3Mn).

References

  • [1] M. Durandurdu, “Pressure-induced phase transition of zinc-blende AlN: An ab initio molecular dynamics study,” Journal of Physics and Chemistry of Solids, vol. 69, pp. 2894–2897, 2008.
  • [2] H. Gomez, T. R. Taylor, D. M. Neumark, “Anion photoelectron spectroscopy of aluminum phosphide clusters,” The Journal of Physical Chemistry A, vol. 105, 6886–6893, 2001.
  • [3] P. Bowen, J. G. Highfield, A. Mocellin, T. A. Ring, “Degradation of aluminum nitride powder in an aqueous environmet,” Journal of American Ceramic Society, vol. 73, pp. 724–728, 1990.
  • [4] N. Takahashi, Y. Matsumoto, T. Nakamura, “Investigations of structure and morphology of the AlN nano-pillar crystal films prepared by halide chemical vapor deposition under atmospheric pressure,” Journal of Physics and Chemistry of Solids, vol. 67, pp. 665–668, 2006.
  • [5] O. A. Golikova, “Boron and Boron-based semiconductors,” Physica Status Solidi A, vol. 51, pp. 31–40, 1979.
  • [6] Q. Y. Fan, C. C. Chai, Q. Wei, Y. T. Yang, “Thermodynamic, elastic, elastic anisotropy and minimum thermal conductivity of β-GaN under high temperature,” Chinese Journal of Physics, vol. 55, pp. 400–411, 2017.
  • [7] S. Adachi, “GaAs, AlAs, and AlxGa1-xAs: Material parameters for use in research and device applications,” Journal of Applied Physics, vol. 58, pp. R1–R29, 1985.
  • [8] L. Guo, “Structural, energetic, and electronic properties of hydrogenated aluminum arsenide clusters,” Journal of Nanoparticle Research, vol. 13, pp. 2029–2039, 2011.
  • [9] L. Y. Shen, X. S. Xu, W. Lu, B. Shi, “Aluminum nitride shaping by non-aqueous gelcasting of low-viscosity and high solid-loading slurry,” Ceramics International, vol. 42, pp. 5569–5574, 2016.
  • [10] B. C. Chen, C. Y. Ho, M. Y. Wen, C. S. Chen, C. Ma, Y. H. Tsai, “Ultrashort-laser-pulse machining characteristics of aluminum nitride and aluminum oxide,” Ceramics International, vol. 41, pp. S191–S196, 2015.
  • [11] L. E. McNeil, M. Grimsditch, R. H. French, “Vibrational spectroscopy of aluminum nitride,” Journal of American Ceramic Society, vol. 76, pp. 1132–1136, 1993.
  • [12] P. Palacios, P. Wahnon, C. Tablero, “Ab initio phonon dispersion calculations for TixGanAsm and TixGanPm compounds,” Computational Materials Science, vol. 33, pp. 118-124, 2005.
  • [13] P. Palacios, J. J. Fernandez, K. Sanchez, J. C. Conesa, P. Wahnon, “First-principles investigation of isolated band formation in half-metallic TixGa1-xP (x = 0.3125–0.25),” Physical Review B, vol. 73, pp. 085206, 2006.
  • [14] J. J. Fernandez, C. Tablero, P. Wahnon, “Application of the exact exchange potential method for half metallic intermediate band alloy semiconductor,” The Journal of Chemical Physics, vol. 120, pp. 10780-10785, 2004.
  • [15] C. Tablero, A. Garcia, J. J. Fernandez, P. Palacios, P. Wahnon, “First principles characterization of direct transitions for high efficiency new photovoltaic materials,” Computational Materials Science, vol. 27, pp. 58-64, 2003.
  • [16] A. Erkişi, “The First-principles study on the investigation of magnetic and electronic properties of Ga4X3Mn (X = P and as)”, Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, vol. 17(2), pp. 371-381, 2022.
  • [17] R. Masrour, “Study of magnetic properties of Ising nanowires with core–shell structure.”, The European Physical Journal B. vol. 96, pp. 100, 2023.
  • [18] S. Belhamra, R. Masrour, E. K. Hlil, “Dynamic Phase Transitions, Electronic, and Magnetic Properties of Ba2NiWO6 and Sr2NiWO6 Double Perovskites.” Journal of Superconductivity and Novel Magnetism. vol. 35, pp. 3613–3622, 2022.
  • [19] R. Masrour, G. Kadim, A. Jabar, E. Mohamed Emerging opportunities for Sr2FeReO6 and Sr2CrWO6 double perovskites in potential magnetic refrigerants and spintronics in room temperature regime. ”Applied Physics A. vol. 128, pp. 1023, 2022.
  • [20] M. Y. Raïâ, R. Masrour, M. Hamedoun, J. Kharbach, A. Rezzouk, A. Hourmatallah, N. Benzakour, K. Bouslykhane, “Effect of L21 and XA ordering on structural, martensitic, electronic, magnetic, elastic, thermal and thermoelectric properties of Co2FeGe Heusler alloys” Solid State Communications, vol. 35, pp. 114932, 2022.
  • [21] I. A. Elkoua, R. Masrour, “Structural, thermodynamics, optical, electronic, magnetic and thermoelectric properties of Heusler Ni2MnGa: An ab initio calculations.” Optical and Quantum Electronics, vol. 54, pp. 667, 2022.
  • [22] A. Abjaou, R. Masrour, A. Jabar, E. K. Hlil, “Magnetocaloric Effect, Structural, Magnetic and Electronic Properties of High Entropy Alloys AlCoxCr1−𝑥 FeNi: First-Principle Calculations and Monte Carlo Simulations”, Spin, vol. 12, pp. 2250017, 2022.
  • [23] S. Kumar, N. Kumar, K. Yadav, A. Kumar, “DFT investigations on optoelectronic spectra and thermoelectric properties of barium cadmium disulphide (BaCdS2)”, Optik, vol. 207, pp. 163797, 2020.
  • [24] G. Kresse, J. Hafner, “Ab initio molecular dynamics for liquid metals,” Physical Review B, vol. 47, pp. 558–561, 1993.
  • [25] G. Kresse, J. Furthmuller, “Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational Materials Science, vol. 6, pp. 15–50, 1996.
  • [26] P. E. Blöchl, “Projector augmented-wave method,” Physical Review B, vol. 50, pp. 17953-17979, 1994.
  • [27] W. Kohn, L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Physical Review A, vol. 140, pp. A1133-A1138, 1965.
  • [28] P. Hohenberg, W. Kohn, “Inhomogeneous Electron Gas,” Physical Review, vol. 136, pp. B864-B871, 1964.
  • [29] J. P. Perdew, K. Burke, M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, vol. 77, pp. 3865-3868, 1996.
  • [30] H. J. Monkhorst, J. D. Pack, “Special points for Brillouin-zone integrations,” Physical Review B, vol. 13, pp. 5188-5192, 1976.
  • [31] K. Momma, F. Izumi F, “VESTA: a three-dimensional visualization system for electronic and structural analysis,” Journal of Applied Crystallography, vol. 41, pp. 653: 658, 2008.
  • [32] F. Han, “A Modern Course in the Quantum Theory of Solids.” Singapore World Scientific Publishing, pp. 378-379, 2013.
  • [33] P. Vinet, J. H. Rose, J. Ferrante, J. R. Smith, “Universal Features of the Equation of State of Solids,” Journal of Physics: Condensed Matter, vol. 1, pp. 1941, 1969.
Year 2024, Volume: 28 Issue: 2, 326 - 332, 30.04.2024
https://doi.org/10.16984/saufenbilder.1339685

Abstract

References

  • [1] M. Durandurdu, “Pressure-induced phase transition of zinc-blende AlN: An ab initio molecular dynamics study,” Journal of Physics and Chemistry of Solids, vol. 69, pp. 2894–2897, 2008.
  • [2] H. Gomez, T. R. Taylor, D. M. Neumark, “Anion photoelectron spectroscopy of aluminum phosphide clusters,” The Journal of Physical Chemistry A, vol. 105, 6886–6893, 2001.
  • [3] P. Bowen, J. G. Highfield, A. Mocellin, T. A. Ring, “Degradation of aluminum nitride powder in an aqueous environmet,” Journal of American Ceramic Society, vol. 73, pp. 724–728, 1990.
  • [4] N. Takahashi, Y. Matsumoto, T. Nakamura, “Investigations of structure and morphology of the AlN nano-pillar crystal films prepared by halide chemical vapor deposition under atmospheric pressure,” Journal of Physics and Chemistry of Solids, vol. 67, pp. 665–668, 2006.
  • [5] O. A. Golikova, “Boron and Boron-based semiconductors,” Physica Status Solidi A, vol. 51, pp. 31–40, 1979.
  • [6] Q. Y. Fan, C. C. Chai, Q. Wei, Y. T. Yang, “Thermodynamic, elastic, elastic anisotropy and minimum thermal conductivity of β-GaN under high temperature,” Chinese Journal of Physics, vol. 55, pp. 400–411, 2017.
  • [7] S. Adachi, “GaAs, AlAs, and AlxGa1-xAs: Material parameters for use in research and device applications,” Journal of Applied Physics, vol. 58, pp. R1–R29, 1985.
  • [8] L. Guo, “Structural, energetic, and electronic properties of hydrogenated aluminum arsenide clusters,” Journal of Nanoparticle Research, vol. 13, pp. 2029–2039, 2011.
  • [9] L. Y. Shen, X. S. Xu, W. Lu, B. Shi, “Aluminum nitride shaping by non-aqueous gelcasting of low-viscosity and high solid-loading slurry,” Ceramics International, vol. 42, pp. 5569–5574, 2016.
  • [10] B. C. Chen, C. Y. Ho, M. Y. Wen, C. S. Chen, C. Ma, Y. H. Tsai, “Ultrashort-laser-pulse machining characteristics of aluminum nitride and aluminum oxide,” Ceramics International, vol. 41, pp. S191–S196, 2015.
  • [11] L. E. McNeil, M. Grimsditch, R. H. French, “Vibrational spectroscopy of aluminum nitride,” Journal of American Ceramic Society, vol. 76, pp. 1132–1136, 1993.
  • [12] P. Palacios, P. Wahnon, C. Tablero, “Ab initio phonon dispersion calculations for TixGanAsm and TixGanPm compounds,” Computational Materials Science, vol. 33, pp. 118-124, 2005.
  • [13] P. Palacios, J. J. Fernandez, K. Sanchez, J. C. Conesa, P. Wahnon, “First-principles investigation of isolated band formation in half-metallic TixGa1-xP (x = 0.3125–0.25),” Physical Review B, vol. 73, pp. 085206, 2006.
  • [14] J. J. Fernandez, C. Tablero, P. Wahnon, “Application of the exact exchange potential method for half metallic intermediate band alloy semiconductor,” The Journal of Chemical Physics, vol. 120, pp. 10780-10785, 2004.
  • [15] C. Tablero, A. Garcia, J. J. Fernandez, P. Palacios, P. Wahnon, “First principles characterization of direct transitions for high efficiency new photovoltaic materials,” Computational Materials Science, vol. 27, pp. 58-64, 2003.
  • [16] A. Erkişi, “The First-principles study on the investigation of magnetic and electronic properties of Ga4X3Mn (X = P and as)”, Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, vol. 17(2), pp. 371-381, 2022.
  • [17] R. Masrour, “Study of magnetic properties of Ising nanowires with core–shell structure.”, The European Physical Journal B. vol. 96, pp. 100, 2023.
  • [18] S. Belhamra, R. Masrour, E. K. Hlil, “Dynamic Phase Transitions, Electronic, and Magnetic Properties of Ba2NiWO6 and Sr2NiWO6 Double Perovskites.” Journal of Superconductivity and Novel Magnetism. vol. 35, pp. 3613–3622, 2022.
  • [19] R. Masrour, G. Kadim, A. Jabar, E. Mohamed Emerging opportunities for Sr2FeReO6 and Sr2CrWO6 double perovskites in potential magnetic refrigerants and spintronics in room temperature regime. ”Applied Physics A. vol. 128, pp. 1023, 2022.
  • [20] M. Y. Raïâ, R. Masrour, M. Hamedoun, J. Kharbach, A. Rezzouk, A. Hourmatallah, N. Benzakour, K. Bouslykhane, “Effect of L21 and XA ordering on structural, martensitic, electronic, magnetic, elastic, thermal and thermoelectric properties of Co2FeGe Heusler alloys” Solid State Communications, vol. 35, pp. 114932, 2022.
  • [21] I. A. Elkoua, R. Masrour, “Structural, thermodynamics, optical, electronic, magnetic and thermoelectric properties of Heusler Ni2MnGa: An ab initio calculations.” Optical and Quantum Electronics, vol. 54, pp. 667, 2022.
  • [22] A. Abjaou, R. Masrour, A. Jabar, E. K. Hlil, “Magnetocaloric Effect, Structural, Magnetic and Electronic Properties of High Entropy Alloys AlCoxCr1−𝑥 FeNi: First-Principle Calculations and Monte Carlo Simulations”, Spin, vol. 12, pp. 2250017, 2022.
  • [23] S. Kumar, N. Kumar, K. Yadav, A. Kumar, “DFT investigations on optoelectronic spectra and thermoelectric properties of barium cadmium disulphide (BaCdS2)”, Optik, vol. 207, pp. 163797, 2020.
  • [24] G. Kresse, J. Hafner, “Ab initio molecular dynamics for liquid metals,” Physical Review B, vol. 47, pp. 558–561, 1993.
  • [25] G. Kresse, J. Furthmuller, “Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational Materials Science, vol. 6, pp. 15–50, 1996.
  • [26] P. E. Blöchl, “Projector augmented-wave method,” Physical Review B, vol. 50, pp. 17953-17979, 1994.
  • [27] W. Kohn, L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Physical Review A, vol. 140, pp. A1133-A1138, 1965.
  • [28] P. Hohenberg, W. Kohn, “Inhomogeneous Electron Gas,” Physical Review, vol. 136, pp. B864-B871, 1964.
  • [29] J. P. Perdew, K. Burke, M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, vol. 77, pp. 3865-3868, 1996.
  • [30] H. J. Monkhorst, J. D. Pack, “Special points for Brillouin-zone integrations,” Physical Review B, vol. 13, pp. 5188-5192, 1976.
  • [31] K. Momma, F. Izumi F, “VESTA: a three-dimensional visualization system for electronic and structural analysis,” Journal of Applied Crystallography, vol. 41, pp. 653: 658, 2008.
  • [32] F. Han, “A Modern Course in the Quantum Theory of Solids.” Singapore World Scientific Publishing, pp. 378-379, 2013.
  • [33] P. Vinet, J. H. Rose, J. Ferrante, J. R. Smith, “Universal Features of the Equation of State of Solids,” Journal of Physics: Condensed Matter, vol. 1, pp. 1941, 1969.
There are 33 citations in total.

Details

Primary Language English
Subjects Structural Properties of Condensed Matter, Condensed Matter Physics (Other)
Journal Section Research Articles
Authors

Buğra Yıldız 0000-0002-0080-7096

Aytaç Erkişi 0000-0001-7995-7590

Early Pub Date April 22, 2024
Publication Date April 30, 2024
Submission Date August 8, 2023
Acceptance Date December 25, 2023
Published in Issue Year 2024 Volume: 28 Issue: 2

Cite

APA Yıldız, B., & Erkişi, A. (2024). Semiconducting Characteristic of Antiferromagnetic Al4X3Mn (X = P, As and Sb) Compounds with Ab Initio Simulation Methods. Sakarya University Journal of Science, 28(2), 326-332. https://doi.org/10.16984/saufenbilder.1339685
AMA Yıldız B, Erkişi A. Semiconducting Characteristic of Antiferromagnetic Al4X3Mn (X = P, As and Sb) Compounds with Ab Initio Simulation Methods. SAUJS. April 2024;28(2):326-332. doi:10.16984/saufenbilder.1339685
Chicago Yıldız, Buğra, and Aytaç Erkişi. “Semiconducting Characteristic of Antiferromagnetic Al4X3Mn (X = P, As and Sb) Compounds With Ab Initio Simulation Methods”. Sakarya University Journal of Science 28, no. 2 (April 2024): 326-32. https://doi.org/10.16984/saufenbilder.1339685.
EndNote Yıldız B, Erkişi A (April 1, 2024) Semiconducting Characteristic of Antiferromagnetic Al4X3Mn (X = P, As and Sb) Compounds with Ab Initio Simulation Methods. Sakarya University Journal of Science 28 2 326–332.
IEEE B. Yıldız and A. Erkişi, “Semiconducting Characteristic of Antiferromagnetic Al4X3Mn (X = P, As and Sb) Compounds with Ab Initio Simulation Methods”, SAUJS, vol. 28, no. 2, pp. 326–332, 2024, doi: 10.16984/saufenbilder.1339685.
ISNAD Yıldız, Buğra - Erkişi, Aytaç. “Semiconducting Characteristic of Antiferromagnetic Al4X3Mn (X = P, As and Sb) Compounds With Ab Initio Simulation Methods”. Sakarya University Journal of Science 28/2 (April 2024), 326-332. https://doi.org/10.16984/saufenbilder.1339685.
JAMA Yıldız B, Erkişi A. Semiconducting Characteristic of Antiferromagnetic Al4X3Mn (X = P, As and Sb) Compounds with Ab Initio Simulation Methods. SAUJS. 2024;28:326–332.
MLA Yıldız, Buğra and Aytaç Erkişi. “Semiconducting Characteristic of Antiferromagnetic Al4X3Mn (X = P, As and Sb) Compounds With Ab Initio Simulation Methods”. Sakarya University Journal of Science, vol. 28, no. 2, 2024, pp. 326-32, doi:10.16984/saufenbilder.1339685.
Vancouver Yıldız B, Erkişi A. Semiconducting Characteristic of Antiferromagnetic Al4X3Mn (X = P, As and Sb) Compounds with Ab Initio Simulation Methods. SAUJS. 2024;28(2):326-32.