Araştırma Makalesi
BibTex RIS Kaynak Göster

A Note on the Laplacian Energy of the Power Graph of a Finite Cyclic Group

Yıl 2024, Cilt: 28 Sayı: 2, 431 - 437, 30.04.2024
https://doi.org/10.16984/saufenbilder.1369766

Öz

In this study, the Laplacian matrix concept for the power graph of a finite cyclic group is redefined by considering the block matrix structure. Then, with the help of the eigenvalues of the Laplacian matrix in question, the concept of Laplacian energy for the power graphs of finite cyclic groups was defined and introduced into the literature. In addition, boundary studies were carried out for the Laplacian energy in question using the concepts the trace of a matrix, the Cauchy-Schwarz inequality, the relationship between the arithmetic mean and geometric mean, and determinant. Later, various results were obtained for the Laplacian energy in question for cases where the order of a cyclic group is the positive integer power of a prime.

Kaynakça

  • [1] A. V. Kelarev, S. J. Quinn, “A Combinatorial Property and Power Graphs of Groups,” Contribibutions to General Algebra, vol. 12, pp. 229-235, 2000.
  • [2] A. V. Kelarev, S. J. Quinn, “Directed Graphs and Combinatorial Properties of Semigroups,” Journal of Algebra, vol. 251, no. 1, pp. 16-26, 2002.
  • [3] A. V. Kelarev, S. J. Quinn, “A Combinatorial Property and Power Graphs of Semigroups,” Commentationes Mathematicae Universitatis Carolinae, vol. 45, no. 1, pp. 1-7, 2004.
  • [4] I. Chakrabarty, S. Ghosh, M. K. Sen, “Undirected Power Graphs of Semigroups,” Semigroup Forum, vol. 78, pp. 410-426, 2009.
  • [5] P. J. Cameron, “The Power Graph of AFinite Group II.,” Journal of Group Theory, vol. 13, no. 6, pp. 779-783, 2010.
  • [6] P. J. Cameron, S. Ghosh, “The Power Graph of A Finite Group,” Discrete Mathematics, vol. 311, no. 13, pp. 1220-1222, 2011.
  • [7] S. Chattopadhyay, P. Panigrahi, F. Atik, “Spectral Radius of Power Graphs on Certain Finite Groups,” Indagationes Mathematicae, vol.29, no. 2, pp. 730-737, 2018.
  • [8] I. Gutman, “The Energy of Graph,” Berichteder Mathematisch Statistischen Sektion im Forschungszentrum Graz, vol. 103, pp. 1-22, 1978.
  • [9] I. Gutman, B. Zhou, “Laplacian Energy of AGraph,” Linear Algebra and its Applications, vol. 414, no. 1, pp. 29-37, 2006.
Yıl 2024, Cilt: 28 Sayı: 2, 431 - 437, 30.04.2024
https://doi.org/10.16984/saufenbilder.1369766

Öz

Kaynakça

  • [1] A. V. Kelarev, S. J. Quinn, “A Combinatorial Property and Power Graphs of Groups,” Contribibutions to General Algebra, vol. 12, pp. 229-235, 2000.
  • [2] A. V. Kelarev, S. J. Quinn, “Directed Graphs and Combinatorial Properties of Semigroups,” Journal of Algebra, vol. 251, no. 1, pp. 16-26, 2002.
  • [3] A. V. Kelarev, S. J. Quinn, “A Combinatorial Property and Power Graphs of Semigroups,” Commentationes Mathematicae Universitatis Carolinae, vol. 45, no. 1, pp. 1-7, 2004.
  • [4] I. Chakrabarty, S. Ghosh, M. K. Sen, “Undirected Power Graphs of Semigroups,” Semigroup Forum, vol. 78, pp. 410-426, 2009.
  • [5] P. J. Cameron, “The Power Graph of AFinite Group II.,” Journal of Group Theory, vol. 13, no. 6, pp. 779-783, 2010.
  • [6] P. J. Cameron, S. Ghosh, “The Power Graph of A Finite Group,” Discrete Mathematics, vol. 311, no. 13, pp. 1220-1222, 2011.
  • [7] S. Chattopadhyay, P. Panigrahi, F. Atik, “Spectral Radius of Power Graphs on Certain Finite Groups,” Indagationes Mathematicae, vol.29, no. 2, pp. 730-737, 2018.
  • [8] I. Gutman, “The Energy of Graph,” Berichteder Mathematisch Statistischen Sektion im Forschungszentrum Graz, vol. 103, pp. 1-22, 1978.
  • [9] I. Gutman, B. Zhou, “Laplacian Energy of AGraph,” Linear Algebra and its Applications, vol. 414, no. 1, pp. 29-37, 2006.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi, Temel Matematik (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Nurşah Mutlu Varlıoğlu 0000-0003-0873-6277

Şerife Büyükköse 0000-0001-7629-4277

Erken Görünüm Tarihi 26 Nisan 2024
Yayımlanma Tarihi 30 Nisan 2024
Gönderilme Tarihi 2 Ekim 2023
Kabul Tarihi 31 Ocak 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 28 Sayı: 2

Kaynak Göster

APA Mutlu Varlıoğlu, N., & Büyükköse, Ş. (2024). A Note on the Laplacian Energy of the Power Graph of a Finite Cyclic Group. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(2), 431-437. https://doi.org/10.16984/saufenbilder.1369766
AMA Mutlu Varlıoğlu N, Büyükköse Ş. A Note on the Laplacian Energy of the Power Graph of a Finite Cyclic Group. SAUJS. Nisan 2024;28(2):431-437. doi:10.16984/saufenbilder.1369766
Chicago Mutlu Varlıoğlu, Nurşah, ve Şerife Büyükköse. “A Note on the Laplacian Energy of the Power Graph of a Finite Cyclic Group”. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28, sy. 2 (Nisan 2024): 431-37. https://doi.org/10.16984/saufenbilder.1369766.
EndNote Mutlu Varlıoğlu N, Büyükköse Ş (01 Nisan 2024) A Note on the Laplacian Energy of the Power Graph of a Finite Cyclic Group. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28 2 431–437.
IEEE N. Mutlu Varlıoğlu ve Ş. Büyükköse, “A Note on the Laplacian Energy of the Power Graph of a Finite Cyclic Group”, SAUJS, c. 28, sy. 2, ss. 431–437, 2024, doi: 10.16984/saufenbilder.1369766.
ISNAD Mutlu Varlıoğlu, Nurşah - Büyükköse, Şerife. “A Note on the Laplacian Energy of the Power Graph of a Finite Cyclic Group”. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28/2 (Nisan 2024), 431-437. https://doi.org/10.16984/saufenbilder.1369766.
JAMA Mutlu Varlıoğlu N, Büyükköse Ş. A Note on the Laplacian Energy of the Power Graph of a Finite Cyclic Group. SAUJS. 2024;28:431–437.
MLA Mutlu Varlıoğlu, Nurşah ve Şerife Büyükköse. “A Note on the Laplacian Energy of the Power Graph of a Finite Cyclic Group”. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 28, sy. 2, 2024, ss. 431-7, doi:10.16984/saufenbilder.1369766.
Vancouver Mutlu Varlıoğlu N, Büyükköse Ş. A Note on the Laplacian Energy of the Power Graph of a Finite Cyclic Group. SAUJS. 2024;28(2):431-7.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.