Research Article
BibTex RIS Cite

Analysis of Electrochemical Deposition of Polyaniline and Polyaniline Composites in Sodium Tungstate and Sodium Molybdate Solutions

Year 2024, Volume: 28 Issue: 5, 1048 - 1056

Abstract

Although polyaniline has a high electroactivity in environments below pH 5, it loses its electroactivity in neutral and basic environments. In addition, polyaniline film does not give physically stable film when it becomes thick. For these reasons, polyaniline has been synthesized in the presence of other monomers or inorganic/organic species, leading to the obtaining of composite polymers with some new electrochemical and physical properties. In this study, novel composite polymer films of polyaniline were synthesized electrochemically in the presence of different concentrations of Na2MoO4.2H2O and Na2WO4.2H2O, and these composite polymer films were examined in monomer-free solutions for electrochemical investigation. As a result, the cathodic charge of polyaniline increased from 0.25 mC to 1.50 mC in the presence of 0.05 M Na2MoO4.2H2O. Also, the polyaniline/WO3 composite achieved a charge transfer of 0.42 mC in the presence of 0.25 M NiSO4.2H2O, 0.05 M NiCl2.6H2O, Na2WO4, Na2MoO4.2H2O, 0.4 M Na3C6H5O7.2H2O and 0.05 Na2WO4.2H2O as a metal source. These prove the better charge transfer during the redox reaction of the polyaniline composite film.

References

  • G. Inzelt, “Conducting polymers: past, present, future,” Journal of Electrochemical Science and Engineering, vol. 8, no. 1, 2018.
  • S. A. Campbell, Y. Li, S. Breakspear, F. C. Walsh, J. R. Smith, “Conducting polymer coatings in electrochemical technology Part 1 – Synthesis and fundamental aspects,” Transactions of the IMF, vol. 85, no. 5, pp. 237-244, 2007.
  • M. H. Naveen, N. G. Gurudatt, Y. B. Shim, “Applications of conducting polymer composites to electrochemical sensors: A review,” Applied Materials Today, vol. 9, pp. 419-433, 2017.
  • P. C. de León, S. A. Campbell, J. R. Smith, F. C. Walsh, “Conducting polymer coatings in electrochemical technology Part 2 – Application areas,” Transactions of the IMF, vol. 86, no. 1, pp. 34-40, 2008.
  • M. Gerard, A. Chaubey, B. D. Malhotra, Application of conducting polymers to biosensors,” Bisensors and Bioelectronics, vol. 17, no. 5, pp. 345-359, 2002.
  • T. K. Das, S. Prusty, “Review on Conducting Polymers and Their Applications,” Polymer - Plastics Technology and Engineering, vol. 51, no. 14, pp. 1487-1500, 2012.
  • R. Tucceri, “Practical Applications of Poly(o-aminophenol) film electrodes,” The Open Physical Chemistry Journal, vol. 4, pp. 45–61, 2010.
  • A. A. Syed, M. K. Dinesan, “Review: Polyaniline-A novel polymeric material,” Talanta, vol. 38, no. 8, pp. 815-837, 1991.
  • Y. Wei, W. W. Focke, G. E. Wnek, A. Ray, A. G. MacDiarmid, “Synthesis and electrochemistry of alkyl ring-substituted polyanilines,” The Journal of Physical Chemistry, vol. 93, no. 1, pp. 495-499, 1989.
  • D. D. Borole, U. R. Kapadi, P. P. Mahulikar, D. G. Hundiwale, “Electrochemical behaviour of polyaniline, poly(o-toluidine) and their copolymer in organic sulphonic acids,” Materials Letters, vol. 58, no. 29, pp. 3816-3822, 2004.
  • G. Dwivedi, G. Munjal, A. N. Bhaskarwar, A. Chaudhary, “Dye-sensitized solar cells with polyaniline: A review,” Inorganic Chemistry Communications, vol. 135. Pp. 109087, 2022.
  • B. Wessling, “New insight into organic metal polyaniline morphology and structure,” Polymers, vol. 2, no. 4, pp. 786-798, 2010.
  • Q. Hao, X. Xia, W. Lei, W. Wang, J. Qiu, “Facile synthesis of sandwich-like polyaniline/boron-doped graphene nano hybrid for supercapacitors,” Carbon, vol. 81, no. 1, pp. 552-563, 2015.
  • P. Gajendran, R. Saraswathi, “Polyaniline-carbon nanotube composites,” Pure and Applied Chemistry, vol. 80, no. 11, pp. 2377-2395, 2008.
  • W. Feng, X. D. Bai, Y. Q. Lian, J. Liang, X. G. Wang, K. Yoshino, “Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization,” Carbon, vol. 41, no. 8, pp. 1551-1557, 2003.
  • J.-E. Park, S.-G. Park, A. Koukitu, O. Hatozaki, N. Oyama, “Electrochemical Behavior of the Polyaniline-Organosulfur Composite Film Containing Ag Nanoparticles,” Journal of The Electrochemical Society, vol. 150, no. 7, 2003.
  • A. F. Diaz, J. A. Logan, “Electroactive polyaniline films,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 111, no. 1, pp. 111-114, 1980.
  • Q. Yang, Y. Zhang, H. Li, Y. Zhang, M. Liu, J. Luo, L. Tan, H. Tang, S. Yao, “Electrochemical copolymerization study of o-toluidine and o-aminophenol by the simultaneous EQCM and in situ FTIR spectroelectrochemisty,” Talanta, vol. 81, no. 1-2, pp. 664-672, 2010.
  • A. Unal, A. Robert Hillman, K. S. Ryder, S. Cihangir, “Electrogravimetric analysis of poly(aniline-co-o-toluidine) copolymer films in the presence of fluoride ions,” Journal of Electroanalytical Chemistry, vol. 895, pp. 115519, 2021.
  • A. Unal, A. R. Hillman, K. S. Ryder, S. Cihangir, “Highly Efficient Defluoridation of Water through Reusable poly(aniline-co-o-aminophenol) Copolymer Modified Electrode Using Electrochemical Quartz Crystal Microbalance,” Journal of The Electrochemical Society, vol. 168, no. 2, pp. 022502, 2021.
  • R. Gangopadhyay, A. De, “Conducting polymer nanocomposites: A brief overview,” Chemistry of Materials, vol. 12, no. 3, pp. 608-622, 2000.
  • A. Malinauskas, J. Malinauskiene, A. Ramanavičius, “Conducting polymer-based nanostructurized materials: Electrochemical aspects,” Nanotechnology, vol. 16, no. 10, pp. 51-62, 2005.
  • M. A. Khan, U. Ishrat, A. M. Dar, A. Ahmad, “Structural, electrical, optical and analytical applications of newly synthesized polyaniline based nickel molybdate composite,” Journal of Alloys and Compounds, vol. 636, pp. 124-130, 2015.
  • S. Emin, C. Altinkaya, A. Semerci, H. Okuyucu, A. Yildiz, P. Stefanov, “Tungsten carbide electrocatalysts prepared from metallic tungsten nanoparticles for efficient hydrogen evolution,” Applied Catalysis B: Enviromental, vol. 236, pp. 147-153, 2018.
  • D. Szymanska, I. A. Rutkowska, L. Adamczyk, S. Zoladek, P. J. Kulesza, “Effective charge propagation and storage in hybrid films of tungsten oxide and poly(3,4-ethylenedioxythiophene),” Journal of Solid State Electrochemistry, vol. 14, pp. 2049-2056, 2010.
  • T. He, W. Zhang, P. Manasa, F. Ran, “Quantum dots of molybdenum nitride embedded in continuously distributed polyaniline as novel electrode material for supercapacitor,” Journal of Alloys and Compounds, vol. 812, pp. 152138, 2020.
  • V. Karpakam, K. Kamaraj, S. Sathiyanarayanan, G. Venkatachari, and S. Ramu, “Electrosynthesis of polyaniline-molybdate coating on steel and its corrosion protection performance,” Electrochim Acta, vol. 56, no. 5, pp. 2165-2173, 2011.
  • T. Machappa, S. Badrunnisa, M. V. N. A. Prasad, “Conducting polyaniline doped with zinc tungstate matrix film as gas sensing composite,” Materials Today: Proceedings, vol. 49, no. 5, pp. 1899-1904, 2022.
  • S S. K. Ponnaiah, P. Periakaruppan, “A glassy carbon electrode modified with a copper tungstate and polyaniline nanocomposite for voltammetric determination of quercetin,” Microchimica Acta, vol. 185, no. 11, pp. 524, 2018.
  • M. Sabouri, T. Shahrabi, M. G. Hosseini, “Improving corrosion protection performance of polypyrrole coating by tungstate ion dopants,” Russian Journal of Electrochemistry, vol. 43, no. 12, pp. 1390-1397, 2007.
  • J. Chu, D. Lu, B. Wu, X. Wang, M. Gong, R. Zhang, S. Xiong, “Synthesis and electrochromic properties of conducting polymers: Polyaniline directly grown on fluorine-doped tin oxide substrate via hydrothermal techniques,” Solar Energy Materials and Solar Cells, vol. 177, pp. 70-74, 2018.
  • M. A. Mohamoud, A. R. Hillman, “The effect of anion identity on the viscoelastic properties of polyaniline films during electrochemical film deposition and redox cycling,” Electrochimica Acta, vol. 53, no. 3, pp. 1206-1216, 2007.
  • A. R. Hillman, M. A. Mohamoud, “Ion, solvent and polymer dynamics in polyaniline conducting polymer films,” Electrochimica Acta, vol. 51, no. 27, pp. 6018-6024, 2006.
  • M. Allam, M. Benaicha, A. Dakhouche, “Electrodeposition and characterization of NiMoW alloy as electrode material for hydrogen evolution in alkaline water electrolysis,” International Journal of Hydrogen Energy, vol. 43, no. 6, pp. 3394-3405, 2018.
Year 2024, Volume: 28 Issue: 5, 1048 - 1056

Abstract

References

  • G. Inzelt, “Conducting polymers: past, present, future,” Journal of Electrochemical Science and Engineering, vol. 8, no. 1, 2018.
  • S. A. Campbell, Y. Li, S. Breakspear, F. C. Walsh, J. R. Smith, “Conducting polymer coatings in electrochemical technology Part 1 – Synthesis and fundamental aspects,” Transactions of the IMF, vol. 85, no. 5, pp. 237-244, 2007.
  • M. H. Naveen, N. G. Gurudatt, Y. B. Shim, “Applications of conducting polymer composites to electrochemical sensors: A review,” Applied Materials Today, vol. 9, pp. 419-433, 2017.
  • P. C. de León, S. A. Campbell, J. R. Smith, F. C. Walsh, “Conducting polymer coatings in electrochemical technology Part 2 – Application areas,” Transactions of the IMF, vol. 86, no. 1, pp. 34-40, 2008.
  • M. Gerard, A. Chaubey, B. D. Malhotra, Application of conducting polymers to biosensors,” Bisensors and Bioelectronics, vol. 17, no. 5, pp. 345-359, 2002.
  • T. K. Das, S. Prusty, “Review on Conducting Polymers and Their Applications,” Polymer - Plastics Technology and Engineering, vol. 51, no. 14, pp. 1487-1500, 2012.
  • R. Tucceri, “Practical Applications of Poly(o-aminophenol) film electrodes,” The Open Physical Chemistry Journal, vol. 4, pp. 45–61, 2010.
  • A. A. Syed, M. K. Dinesan, “Review: Polyaniline-A novel polymeric material,” Talanta, vol. 38, no. 8, pp. 815-837, 1991.
  • Y. Wei, W. W. Focke, G. E. Wnek, A. Ray, A. G. MacDiarmid, “Synthesis and electrochemistry of alkyl ring-substituted polyanilines,” The Journal of Physical Chemistry, vol. 93, no. 1, pp. 495-499, 1989.
  • D. D. Borole, U. R. Kapadi, P. P. Mahulikar, D. G. Hundiwale, “Electrochemical behaviour of polyaniline, poly(o-toluidine) and their copolymer in organic sulphonic acids,” Materials Letters, vol. 58, no. 29, pp. 3816-3822, 2004.
  • G. Dwivedi, G. Munjal, A. N. Bhaskarwar, A. Chaudhary, “Dye-sensitized solar cells with polyaniline: A review,” Inorganic Chemistry Communications, vol. 135. Pp. 109087, 2022.
  • B. Wessling, “New insight into organic metal polyaniline morphology and structure,” Polymers, vol. 2, no. 4, pp. 786-798, 2010.
  • Q. Hao, X. Xia, W. Lei, W. Wang, J. Qiu, “Facile synthesis of sandwich-like polyaniline/boron-doped graphene nano hybrid for supercapacitors,” Carbon, vol. 81, no. 1, pp. 552-563, 2015.
  • P. Gajendran, R. Saraswathi, “Polyaniline-carbon nanotube composites,” Pure and Applied Chemistry, vol. 80, no. 11, pp. 2377-2395, 2008.
  • W. Feng, X. D. Bai, Y. Q. Lian, J. Liang, X. G. Wang, K. Yoshino, “Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization,” Carbon, vol. 41, no. 8, pp. 1551-1557, 2003.
  • J.-E. Park, S.-G. Park, A. Koukitu, O. Hatozaki, N. Oyama, “Electrochemical Behavior of the Polyaniline-Organosulfur Composite Film Containing Ag Nanoparticles,” Journal of The Electrochemical Society, vol. 150, no. 7, 2003.
  • A. F. Diaz, J. A. Logan, “Electroactive polyaniline films,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 111, no. 1, pp. 111-114, 1980.
  • Q. Yang, Y. Zhang, H. Li, Y. Zhang, M. Liu, J. Luo, L. Tan, H. Tang, S. Yao, “Electrochemical copolymerization study of o-toluidine and o-aminophenol by the simultaneous EQCM and in situ FTIR spectroelectrochemisty,” Talanta, vol. 81, no. 1-2, pp. 664-672, 2010.
  • A. Unal, A. Robert Hillman, K. S. Ryder, S. Cihangir, “Electrogravimetric analysis of poly(aniline-co-o-toluidine) copolymer films in the presence of fluoride ions,” Journal of Electroanalytical Chemistry, vol. 895, pp. 115519, 2021.
  • A. Unal, A. R. Hillman, K. S. Ryder, S. Cihangir, “Highly Efficient Defluoridation of Water through Reusable poly(aniline-co-o-aminophenol) Copolymer Modified Electrode Using Electrochemical Quartz Crystal Microbalance,” Journal of The Electrochemical Society, vol. 168, no. 2, pp. 022502, 2021.
  • R. Gangopadhyay, A. De, “Conducting polymer nanocomposites: A brief overview,” Chemistry of Materials, vol. 12, no. 3, pp. 608-622, 2000.
  • A. Malinauskas, J. Malinauskiene, A. Ramanavičius, “Conducting polymer-based nanostructurized materials: Electrochemical aspects,” Nanotechnology, vol. 16, no. 10, pp. 51-62, 2005.
  • M. A. Khan, U. Ishrat, A. M. Dar, A. Ahmad, “Structural, electrical, optical and analytical applications of newly synthesized polyaniline based nickel molybdate composite,” Journal of Alloys and Compounds, vol. 636, pp. 124-130, 2015.
  • S. Emin, C. Altinkaya, A. Semerci, H. Okuyucu, A. Yildiz, P. Stefanov, “Tungsten carbide electrocatalysts prepared from metallic tungsten nanoparticles for efficient hydrogen evolution,” Applied Catalysis B: Enviromental, vol. 236, pp. 147-153, 2018.
  • D. Szymanska, I. A. Rutkowska, L. Adamczyk, S. Zoladek, P. J. Kulesza, “Effective charge propagation and storage in hybrid films of tungsten oxide and poly(3,4-ethylenedioxythiophene),” Journal of Solid State Electrochemistry, vol. 14, pp. 2049-2056, 2010.
  • T. He, W. Zhang, P. Manasa, F. Ran, “Quantum dots of molybdenum nitride embedded in continuously distributed polyaniline as novel electrode material for supercapacitor,” Journal of Alloys and Compounds, vol. 812, pp. 152138, 2020.
  • V. Karpakam, K. Kamaraj, S. Sathiyanarayanan, G. Venkatachari, and S. Ramu, “Electrosynthesis of polyaniline-molybdate coating on steel and its corrosion protection performance,” Electrochim Acta, vol. 56, no. 5, pp. 2165-2173, 2011.
  • T. Machappa, S. Badrunnisa, M. V. N. A. Prasad, “Conducting polyaniline doped with zinc tungstate matrix film as gas sensing composite,” Materials Today: Proceedings, vol. 49, no. 5, pp. 1899-1904, 2022.
  • S S. K. Ponnaiah, P. Periakaruppan, “A glassy carbon electrode modified with a copper tungstate and polyaniline nanocomposite for voltammetric determination of quercetin,” Microchimica Acta, vol. 185, no. 11, pp. 524, 2018.
  • M. Sabouri, T. Shahrabi, M. G. Hosseini, “Improving corrosion protection performance of polypyrrole coating by tungstate ion dopants,” Russian Journal of Electrochemistry, vol. 43, no. 12, pp. 1390-1397, 2007.
  • J. Chu, D. Lu, B. Wu, X. Wang, M. Gong, R. Zhang, S. Xiong, “Synthesis and electrochromic properties of conducting polymers: Polyaniline directly grown on fluorine-doped tin oxide substrate via hydrothermal techniques,” Solar Energy Materials and Solar Cells, vol. 177, pp. 70-74, 2018.
  • M. A. Mohamoud, A. R. Hillman, “The effect of anion identity on the viscoelastic properties of polyaniline films during electrochemical film deposition and redox cycling,” Electrochimica Acta, vol. 53, no. 3, pp. 1206-1216, 2007.
  • A. R. Hillman, M. A. Mohamoud, “Ion, solvent and polymer dynamics in polyaniline conducting polymer films,” Electrochimica Acta, vol. 51, no. 27, pp. 6018-6024, 2006.
  • M. Allam, M. Benaicha, A. Dakhouche, “Electrodeposition and characterization of NiMoW alloy as electrode material for hydrogen evolution in alkaline water electrolysis,” International Journal of Hydrogen Energy, vol. 43, no. 6, pp. 3394-3405, 2018.
There are 34 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry (Other)
Journal Section Research Articles
Authors

Asuman Ünal 0000-0002-8850-7150

Early Pub Date October 18, 2024
Publication Date
Submission Date June 11, 2024
Acceptance Date September 17, 2024
Published in Issue Year 2024 Volume: 28 Issue: 5

Cite

APA Ünal, A. (2024). Analysis of Electrochemical Deposition of Polyaniline and Polyaniline Composites in Sodium Tungstate and Sodium Molybdate Solutions. Sakarya University Journal of Science, 28(5), 1048-1056.
AMA Ünal A. Analysis of Electrochemical Deposition of Polyaniline and Polyaniline Composites in Sodium Tungstate and Sodium Molybdate Solutions. SAUJS. October 2024;28(5):1048-1056.
Chicago Ünal, Asuman. “Analysis of Electrochemical Deposition of Polyaniline and Polyaniline Composites in Sodium Tungstate and Sodium Molybdate Solutions”. Sakarya University Journal of Science 28, no. 5 (October 2024): 1048-56.
EndNote Ünal A (October 1, 2024) Analysis of Electrochemical Deposition of Polyaniline and Polyaniline Composites in Sodium Tungstate and Sodium Molybdate Solutions. Sakarya University Journal of Science 28 5 1048–1056.
IEEE A. Ünal, “Analysis of Electrochemical Deposition of Polyaniline and Polyaniline Composites in Sodium Tungstate and Sodium Molybdate Solutions”, SAUJS, vol. 28, no. 5, pp. 1048–1056, 2024.
ISNAD Ünal, Asuman. “Analysis of Electrochemical Deposition of Polyaniline and Polyaniline Composites in Sodium Tungstate and Sodium Molybdate Solutions”. Sakarya University Journal of Science 28/5 (October 2024), 1048-1056.
JAMA Ünal A. Analysis of Electrochemical Deposition of Polyaniline and Polyaniline Composites in Sodium Tungstate and Sodium Molybdate Solutions. SAUJS. 2024;28:1048–1056.
MLA Ünal, Asuman. “Analysis of Electrochemical Deposition of Polyaniline and Polyaniline Composites in Sodium Tungstate and Sodium Molybdate Solutions”. Sakarya University Journal of Science, vol. 28, no. 5, 2024, pp. 1048-56.
Vancouver Ünal A. Analysis of Electrochemical Deposition of Polyaniline and Polyaniline Composites in Sodium Tungstate and Sodium Molybdate Solutions. SAUJS. 2024;28(5):1048-56.