Research Article
BibTex RIS Cite

Optical and Morphology Mechanism of CeO2 Thin Films Prepared by Ultrasonic Spray Pyrolysis Method

Year 2024, Volume: 28 Issue: 6, 1285 - 1295
https://doi.org/10.16984/saufenbilder.1381531

Abstract

Cerium oxide (CeO2) thin films were successfully fabricated on glass substrates via spray pyrolysis at 350°C with varying molarities (0.025, 0.05 and 0.1 M). We employed various characterisation techniques to assess how molarity influences these thin films' microstructural, optical, morphological, and surface properties. The as-synthesized samples exhibited a distinct face-centred cubic fluorite structure oriented along the (2 0 0) crystallographic plane. Raman spectroscopy provided insights into imperfections, with the longitudinal optical mode confirming the presence of oxygen vacancies. The peak asymmetry and width in the Raman spectra were associated with the existence of Ce+3 ions and oxygen vacancies. Photoluminescence spectra (PL) illustrated an excitation peak at 400 nm and two emission peaks at 525 nm and 600 nm. Our scanning electron microscopy (SEM) images illustrated how molarity affected the morphologies of the samples, while atomic force microscopy (AFM) allowed us to investigate the film's surface morphologies and roughness values. Transmittance analysis within UV-Vis spectral range indicated that these samples were transparent, with transmittance levels ranging from 20% to 60%. Furthermore, we observed a decrease in the band gap energy (Eg) with increasing molarity. These findings hold significant promise for expanding the applications of cerium oxide in technological devices.

References

  • N. Tsud, T.Skála, K. Mašek, P. Hanyš, M. Takahashi, H.Suga,T. Mori, H. Yoshikawa, M. Yoshitake, K. Kobayashi, V. Matolín, “Photoemission study of the tin doped cerium oxide thin films prepared by RF magnetron sputtering,” Thin Solid Films, vol. 518, no. 8, pp. 2206-2209, 2010.
  • H. J. Beie, A. Gnörich, "Oxygen gas sensors based on CeO2 thick and thin films," Sensors and Actuators B: Chemical, vol. 4, no. 3-4, pp. 393-399, 1991.
  • A. Evans, A. B. Hütter, J. L. M. Rupp, L. J. Gauckler, "Review on microfabricated micro-solid oxide fuel cell membranes," Journal of Power Sources, vol. 194, no. 1, pp. 119-129, 2009.
  • N. Q. Minh, "Ceramic Fuel Cells," Journal of the American Ceramic Society, vol. 76, no. 3, pp. 563-588, 1993.
  • K. B. Kusuma, M. Manju, C. R. Ravikumar, N. Raghavendra, M. A. Shilpa Amulya, H. P. Nagaswarupa, H. C. Ananda Murthy, M. R. Anil Kumar, T. R. Shashi Shekhar, “Photocatalytic degradation of Methylene Blue and electrochemical sensing of paracetamol using Cerium oxide nanoparticles synthesized via sonochemical route,” Applied Surface Science Advances, vol. 11, 100304, 2022.
  • T. Toloshniak, Y. Guhel, J. Bernard, A. Besq, S. Marinel, B. Boudart, "Impact of microwave annealing on CeO2 thin films sputtered on (111) Si," Materials Research Bulletin, vol. 70, pp. 712-718, 2015.
  • A. R. Rajan, V. Vilas, A. Rajan, A. John, D. Philip, " Synthesis of nanostructured CeO2 by chemical and biogenic methods: Optical properties and bioactivity," Ceramic International, vol. 46, pp. 14048-14055, 2020.
  • A. Corma, "From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis," Chemical Reviews, vol. 97, no. 6, pp. 2373-2419, 1997.
  • M. Aklalouch, A. Calleja, X. Granados, S. Ricart, V. Boffa, F. Ricci, T. Puig, X. Obradors, " Hybrid sol–gel layers containing CeO2 nanoparticles as UV-protection of plastic lenses for concentrated photovoltaics," Solar Energy Materials and Solar Cells, vol. 120, no. A, pp. 175-182, 2014.
  • B. Mohanty, A. Chattopadhyay, J. Nayak, " Band gap engineering and enhancement of electrical conductivity in hydrothermally synthesized CeO2 PbS nanocomposites for solar cell applications," Journal of Alloys and Compounds, vol. 850, 156735, 2021.
  • S. -Y. Ahn, W. -J. Jang, J. -O. Shim, B. -H. Jeon, H. -S. Roh, "CeO2-based oxygen storage capacity materials in environmental and energy catalysis for carbon neutrality: Extended application and key catalytic properties," Catalysis Reviews
  • C. M. Magdalane , K. Kaviyarasu, J. J. Vijaya, B. Siddhardha , B. Jeyaraj, "Facile synthesis of heterostructured cerium oxide/yttrium oxide nanocomposite in UV light induced photocatalytic degradation and catalytic reduction: Synergistic effect of antimicrobial studies," Journal of Photochemistry & Photobiology, B: Biology, vol. 173, pp. 23-34, 2017.
  • S. Bagheri, I. Khalil, N. M. Julkapli, "Cerium (IV) oxide nanocomposites: Catalytic properties and industrial application," Journal of Rare Earths, vol. 39, no. 2, pp. 129-139, 2021.
  • A. Umar, T. Almas, A. A. Ibrahim, R. Kumar, M. S. AlAssiri, S. Baskoutas, M. S. Akhtar, “An efficient chemical sensor based on CeO2 nanoparticles for the detection of acetylacetone chemical,” Journal of Electroanalytical Chemistry, vol. 864, 114089, 2020.
  • A. Balamurugan, M. Sudha, S. Surendhiran, R. Anandarasu, S. Ravikumar, Y. A. S. Khadar, "Hydrothermal synthesis of samarium (Sm) doped cerium oxide (CeO2) nanoparticles: Characterization and antibacterial activity," Materials Today: Proceedings, vol. 26, pp. 3588-3594, 2020.
  • A. S. Fudala, W. M. Salih, F. F. Alkazaz, "Synthesis different sizes of cerium oxide CeO2 nanoparticles by using different concentrations of precursor via sol–gel method," Materials Today: Proceedings, vol. 49, pp. 2786-2792, 2022.
  • Y. Yulizar, S. Juliyanto, Sudirman, D. O. B. Apriandanu, R. M. Surya, "Novel sol-gel synthesis of CeO2 nanoparticles using Morinda citrifolia L. fruit extracts: Structural and optical analysis," Journal of Molecular Structure, vol. 1231, 129904, 2021.
  • Y. Li, X. Wu, W. Wu, K. Wang, L. Qin, S. Liao, Y. Wen, "Synthesis of CeO2 by thermal decomposition of oxalate and kinetics of thermal decomposition of precursor," Journal of Thermal Analysis and Calorimetry, vol. 117, pp. 399-506, 2014.
  • J. Zheng, Z. Wang, Z. Chen, S. Zuo, "Mechanism of CeO2 synthesized by thermal decomposition of Ce-MOF and its performance of benzene catalytic combustion," Journal of Rare Earths, vol. 39, pp. 790-796, 2021.
  • A. I. Y. Tok, F. Y. C. Boey, Z. Dong, X. L. Sun, "Hydrothermal synthesis of CeO2 nano-particles," Journal of Materials Processing Technology, vol. 190, no. 1–3, pp. 217-222, 2007.
  • A. Xie, S. Wang, W. Liu, J. Zhang, Y. Yang, J. Han, "Rapid hydrothermal synthesis of CeO2 nanoparticles with (2 2 0)-dominated surface and its CO catalytic performance," Materials Research Bulletin, vol. 62, pp. 148-152, 2015.
  • A. A. Kabure, B. S. Shirke, S. R. Mane, K. M. Garadkar, "Microwave-assisted sol-gel synthesis of CeO2–NiO nanocomposite based NO2 gas sensor for selective detection at lower operating temperature," Journal of the Indian Chemical Society, vol. 99, no. 3, 2022.
  • P. H. Ho, M. Ambrosetti, G. Groppi, E. Tronconi, G. Fornasari, A. Vaccari, P. Benito, "Electrodeposition of CeO2 and Pd-CeO2 on small pore size metallic foams: Selection of deposition parameters," Catalysis Today, vol. 334, pp. 37-47, 2019.
  • J. de Souza, A. G. P. da Silva, H. R. Paes Jr, "Synthesis and characterization of CeO2 thin films deposited by spray pyrolysis," Journal of Materials Science: Materials in Electronics, vol. 18, pp. 591-596, 2007.
  • S. R. Ardekani, A. S. R. Aghdam, M. Nazari, A. Bayat, E. Yazdani, E. Saievar-Iranizad, “A comprehensive review on ultrasonic spray pyrolysis technique: Mechanism, main parameters and applications in condensed matter,” Journal of Analytical and Applied Pyrolysis, vol. 141, 104631, 2019.
  • L. dos Santos-Gómez, J. Zamudio-García, J. M. Porras-Vázquez, E. R. Losilla, D. Marrero-López, “Highly oriented and fully dense CGO films prepared by spray-pyrolysis and different precursor salts,” Journal of the European Ceramic Society, vol. 40, no. 8, pp. 3080-3088, 2020.
  • J. A. Oke, T. -C. Jen, “Atomic layer deposition and other thin film deposition techniques: From principles to film properties,” Journal of Materials Research and Technology, vol. 21, pp. 2481-2514, 2022.
  • S. R. Sriram, S. R. Parne, N. Pothukanuri, D. R. Edla, “Prospects of spray pyrolysis technique for gas sensor applications – A comprehensive review,” Journal of Analytical and Applied Pyrolysis, vol.164, 105527, 2022.
  • A. B. Workie, H. S. Ningsih, S. - J. Shih, “An comprehensive review on the spray pyrolysis technique: Historical context, operational factors, classifications, and product applications,” Journal of Analytical and Applied Pyrolysis, vol. 170, 105915, 2023.
  • S. Kurtaran, M. Kellegöz, S. Köse, “Characterization of Gd doped CeO2 thin films grown by ultrasonic spray pyrolysis,” Optical Materials, vol. 117, 111144, 2021.
  • S. Karakaya, L. Kaba, “Enhancing the photocatalytic performance of ZnO: Gd films produced by spray pyrolysis using methylene blue pollutant,” Journal of Materials Science: Materials in Electronics, vol. 34, no.16, 1295, 2023.
  • P. J. King, M. Werner, P. R. Chalker, A. C. Jones, H. C. Aspinall, J. Basca, J. S. Wrench, K. Black, H. O. Davies, P. N. Heys, “Effect of deposition temperature on the properties of CeO2 films grown by atomic layer deposition,” Thin Solid Films, vol. 519, no. 13, pp. 4192-4195, 2011.
  • B. Elidrissi, M. Addou, A. Outzourhit, M. Regragui, A. Bourgrine, A. Kachouane, “Sprayed CeO2 thin films for electrochromic applications, prepared by spray pyrolysis,” Solar Energy Materials and Solar Cells, vol. 69, no. 1, pp 1-8, 2001.
  • O. Vigil, F. Cruz, A. M. Acevedo, G. C. Puente, L. Vaillant, G. Santana, “Structural and optical properties of annealed CdO thin films prepared by spray pyrolysis,” Material Chemistry and Physics, vol. 68, no. 1-3, pp. 249-252, 2001.
  • R. G. Solanki, P. Rajaram, P. K. Bajpai, “Growth, characterization and estimation of lattice strain and size in CdS nanoparticles: X-ray peak profile analysis,” Indian Journal of Physics, vol. 92, no. 5, pp. 595–603, 2018.
  • A. Banerji, V. Grover, V. Sathe, S. K. Deb, A. K. Tyagi, “CeO2-Gd2O3 system: Unraveling of microscopic features by Raman spectroscopy,” Solid State Communication, vol. 149, no. 39-40, pp. 1689-1692, 2009.
  • B. P. Mandal, V. Grover, M. Roy, A. K. Tyagi, “X-ray diffraction and raman spectroscopic investigation on the phase relations in Yb2O3- and Tm2O3-substituted CeO2,” Journal of American Ceramic Society, vol. 90, no.9, pp. 2961-2965, 2007.
  • D. N. Durgasri, T. Vinodkumar, P. Sudarsanam, B. M. Reddy, “Nanosized CeO2–Gd2O3 mixed oxides: Study of structural characterization and catalytic CO oxidation activity,” Catalysis Letters, vol. 144, pp. 971–979, 2014.
  • F. Adar, G. leBourdon, J. Reffner, A. Whitley, “FT-IR and Raman Microscopy on a United Platform,” Spectroscopy, vol. 18, no. 2, pp. 34–40, 2003.
  • M. Dronova, V. Lair, P. Vermaut, A. Ringuedé, V. An, “Study of ceria thin films prepared via electrochemical deposition: Role of selected electrochemical parameters on growth kinetics,” Thin Solid Films, vol. 693, 137674, 2020.
  • R. Murugan, G. Vijayaprasath, G. Ravi, “The influence of substrate temperature on the optical and micro structural properties of cerium oxide thin films deposited by RF sputtering,” Superlattices and Microstructures, vol. 85, pp. 321–330, 2015.
  • P. Dorenbos, “Crystal field splitting of lanthanide 4fn-1 5d-levels in inorganic compounds,” Journal of Alloys and Compounds, vol. 341, no. 1-2, pp. 156–159, 2002.
  • C. O. Avellaneda, M. A. C. Berton, L. O. S. Bulhoes, “Optical and electrochemical properties of CeO2 thin film prepared by an alkoxide route,” Solar Energy Materials and Solar Cells, vol. 92, no. 2, pp. 240–244, 2008.
Year 2024, Volume: 28 Issue: 6, 1285 - 1295
https://doi.org/10.16984/saufenbilder.1381531

Abstract

References

  • N. Tsud, T.Skála, K. Mašek, P. Hanyš, M. Takahashi, H.Suga,T. Mori, H. Yoshikawa, M. Yoshitake, K. Kobayashi, V. Matolín, “Photoemission study of the tin doped cerium oxide thin films prepared by RF magnetron sputtering,” Thin Solid Films, vol. 518, no. 8, pp. 2206-2209, 2010.
  • H. J. Beie, A. Gnörich, "Oxygen gas sensors based on CeO2 thick and thin films," Sensors and Actuators B: Chemical, vol. 4, no. 3-4, pp. 393-399, 1991.
  • A. Evans, A. B. Hütter, J. L. M. Rupp, L. J. Gauckler, "Review on microfabricated micro-solid oxide fuel cell membranes," Journal of Power Sources, vol. 194, no. 1, pp. 119-129, 2009.
  • N. Q. Minh, "Ceramic Fuel Cells," Journal of the American Ceramic Society, vol. 76, no. 3, pp. 563-588, 1993.
  • K. B. Kusuma, M. Manju, C. R. Ravikumar, N. Raghavendra, M. A. Shilpa Amulya, H. P. Nagaswarupa, H. C. Ananda Murthy, M. R. Anil Kumar, T. R. Shashi Shekhar, “Photocatalytic degradation of Methylene Blue and electrochemical sensing of paracetamol using Cerium oxide nanoparticles synthesized via sonochemical route,” Applied Surface Science Advances, vol. 11, 100304, 2022.
  • T. Toloshniak, Y. Guhel, J. Bernard, A. Besq, S. Marinel, B. Boudart, "Impact of microwave annealing on CeO2 thin films sputtered on (111) Si," Materials Research Bulletin, vol. 70, pp. 712-718, 2015.
  • A. R. Rajan, V. Vilas, A. Rajan, A. John, D. Philip, " Synthesis of nanostructured CeO2 by chemical and biogenic methods: Optical properties and bioactivity," Ceramic International, vol. 46, pp. 14048-14055, 2020.
  • A. Corma, "From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis," Chemical Reviews, vol. 97, no. 6, pp. 2373-2419, 1997.
  • M. Aklalouch, A. Calleja, X. Granados, S. Ricart, V. Boffa, F. Ricci, T. Puig, X. Obradors, " Hybrid sol–gel layers containing CeO2 nanoparticles as UV-protection of plastic lenses for concentrated photovoltaics," Solar Energy Materials and Solar Cells, vol. 120, no. A, pp. 175-182, 2014.
  • B. Mohanty, A. Chattopadhyay, J. Nayak, " Band gap engineering and enhancement of electrical conductivity in hydrothermally synthesized CeO2 PbS nanocomposites for solar cell applications," Journal of Alloys and Compounds, vol. 850, 156735, 2021.
  • S. -Y. Ahn, W. -J. Jang, J. -O. Shim, B. -H. Jeon, H. -S. Roh, "CeO2-based oxygen storage capacity materials in environmental and energy catalysis for carbon neutrality: Extended application and key catalytic properties," Catalysis Reviews
  • C. M. Magdalane , K. Kaviyarasu, J. J. Vijaya, B. Siddhardha , B. Jeyaraj, "Facile synthesis of heterostructured cerium oxide/yttrium oxide nanocomposite in UV light induced photocatalytic degradation and catalytic reduction: Synergistic effect of antimicrobial studies," Journal of Photochemistry & Photobiology, B: Biology, vol. 173, pp. 23-34, 2017.
  • S. Bagheri, I. Khalil, N. M. Julkapli, "Cerium (IV) oxide nanocomposites: Catalytic properties and industrial application," Journal of Rare Earths, vol. 39, no. 2, pp. 129-139, 2021.
  • A. Umar, T. Almas, A. A. Ibrahim, R. Kumar, M. S. AlAssiri, S. Baskoutas, M. S. Akhtar, “An efficient chemical sensor based on CeO2 nanoparticles for the detection of acetylacetone chemical,” Journal of Electroanalytical Chemistry, vol. 864, 114089, 2020.
  • A. Balamurugan, M. Sudha, S. Surendhiran, R. Anandarasu, S. Ravikumar, Y. A. S. Khadar, "Hydrothermal synthesis of samarium (Sm) doped cerium oxide (CeO2) nanoparticles: Characterization and antibacterial activity," Materials Today: Proceedings, vol. 26, pp. 3588-3594, 2020.
  • A. S. Fudala, W. M. Salih, F. F. Alkazaz, "Synthesis different sizes of cerium oxide CeO2 nanoparticles by using different concentrations of precursor via sol–gel method," Materials Today: Proceedings, vol. 49, pp. 2786-2792, 2022.
  • Y. Yulizar, S. Juliyanto, Sudirman, D. O. B. Apriandanu, R. M. Surya, "Novel sol-gel synthesis of CeO2 nanoparticles using Morinda citrifolia L. fruit extracts: Structural and optical analysis," Journal of Molecular Structure, vol. 1231, 129904, 2021.
  • Y. Li, X. Wu, W. Wu, K. Wang, L. Qin, S. Liao, Y. Wen, "Synthesis of CeO2 by thermal decomposition of oxalate and kinetics of thermal decomposition of precursor," Journal of Thermal Analysis and Calorimetry, vol. 117, pp. 399-506, 2014.
  • J. Zheng, Z. Wang, Z. Chen, S. Zuo, "Mechanism of CeO2 synthesized by thermal decomposition of Ce-MOF and its performance of benzene catalytic combustion," Journal of Rare Earths, vol. 39, pp. 790-796, 2021.
  • A. I. Y. Tok, F. Y. C. Boey, Z. Dong, X. L. Sun, "Hydrothermal synthesis of CeO2 nano-particles," Journal of Materials Processing Technology, vol. 190, no. 1–3, pp. 217-222, 2007.
  • A. Xie, S. Wang, W. Liu, J. Zhang, Y. Yang, J. Han, "Rapid hydrothermal synthesis of CeO2 nanoparticles with (2 2 0)-dominated surface and its CO catalytic performance," Materials Research Bulletin, vol. 62, pp. 148-152, 2015.
  • A. A. Kabure, B. S. Shirke, S. R. Mane, K. M. Garadkar, "Microwave-assisted sol-gel synthesis of CeO2–NiO nanocomposite based NO2 gas sensor for selective detection at lower operating temperature," Journal of the Indian Chemical Society, vol. 99, no. 3, 2022.
  • P. H. Ho, M. Ambrosetti, G. Groppi, E. Tronconi, G. Fornasari, A. Vaccari, P. Benito, "Electrodeposition of CeO2 and Pd-CeO2 on small pore size metallic foams: Selection of deposition parameters," Catalysis Today, vol. 334, pp. 37-47, 2019.
  • J. de Souza, A. G. P. da Silva, H. R. Paes Jr, "Synthesis and characterization of CeO2 thin films deposited by spray pyrolysis," Journal of Materials Science: Materials in Electronics, vol. 18, pp. 591-596, 2007.
  • S. R. Ardekani, A. S. R. Aghdam, M. Nazari, A. Bayat, E. Yazdani, E. Saievar-Iranizad, “A comprehensive review on ultrasonic spray pyrolysis technique: Mechanism, main parameters and applications in condensed matter,” Journal of Analytical and Applied Pyrolysis, vol. 141, 104631, 2019.
  • L. dos Santos-Gómez, J. Zamudio-García, J. M. Porras-Vázquez, E. R. Losilla, D. Marrero-López, “Highly oriented and fully dense CGO films prepared by spray-pyrolysis and different precursor salts,” Journal of the European Ceramic Society, vol. 40, no. 8, pp. 3080-3088, 2020.
  • J. A. Oke, T. -C. Jen, “Atomic layer deposition and other thin film deposition techniques: From principles to film properties,” Journal of Materials Research and Technology, vol. 21, pp. 2481-2514, 2022.
  • S. R. Sriram, S. R. Parne, N. Pothukanuri, D. R. Edla, “Prospects of spray pyrolysis technique for gas sensor applications – A comprehensive review,” Journal of Analytical and Applied Pyrolysis, vol.164, 105527, 2022.
  • A. B. Workie, H. S. Ningsih, S. - J. Shih, “An comprehensive review on the spray pyrolysis technique: Historical context, operational factors, classifications, and product applications,” Journal of Analytical and Applied Pyrolysis, vol. 170, 105915, 2023.
  • S. Kurtaran, M. Kellegöz, S. Köse, “Characterization of Gd doped CeO2 thin films grown by ultrasonic spray pyrolysis,” Optical Materials, vol. 117, 111144, 2021.
  • S. Karakaya, L. Kaba, “Enhancing the photocatalytic performance of ZnO: Gd films produced by spray pyrolysis using methylene blue pollutant,” Journal of Materials Science: Materials in Electronics, vol. 34, no.16, 1295, 2023.
  • P. J. King, M. Werner, P. R. Chalker, A. C. Jones, H. C. Aspinall, J. Basca, J. S. Wrench, K. Black, H. O. Davies, P. N. Heys, “Effect of deposition temperature on the properties of CeO2 films grown by atomic layer deposition,” Thin Solid Films, vol. 519, no. 13, pp. 4192-4195, 2011.
  • B. Elidrissi, M. Addou, A. Outzourhit, M. Regragui, A. Bourgrine, A. Kachouane, “Sprayed CeO2 thin films for electrochromic applications, prepared by spray pyrolysis,” Solar Energy Materials and Solar Cells, vol. 69, no. 1, pp 1-8, 2001.
  • O. Vigil, F. Cruz, A. M. Acevedo, G. C. Puente, L. Vaillant, G. Santana, “Structural and optical properties of annealed CdO thin films prepared by spray pyrolysis,” Material Chemistry and Physics, vol. 68, no. 1-3, pp. 249-252, 2001.
  • R. G. Solanki, P. Rajaram, P. K. Bajpai, “Growth, characterization and estimation of lattice strain and size in CdS nanoparticles: X-ray peak profile analysis,” Indian Journal of Physics, vol. 92, no. 5, pp. 595–603, 2018.
  • A. Banerji, V. Grover, V. Sathe, S. K. Deb, A. K. Tyagi, “CeO2-Gd2O3 system: Unraveling of microscopic features by Raman spectroscopy,” Solid State Communication, vol. 149, no. 39-40, pp. 1689-1692, 2009.
  • B. P. Mandal, V. Grover, M. Roy, A. K. Tyagi, “X-ray diffraction and raman spectroscopic investigation on the phase relations in Yb2O3- and Tm2O3-substituted CeO2,” Journal of American Ceramic Society, vol. 90, no.9, pp. 2961-2965, 2007.
  • D. N. Durgasri, T. Vinodkumar, P. Sudarsanam, B. M. Reddy, “Nanosized CeO2–Gd2O3 mixed oxides: Study of structural characterization and catalytic CO oxidation activity,” Catalysis Letters, vol. 144, pp. 971–979, 2014.
  • F. Adar, G. leBourdon, J. Reffner, A. Whitley, “FT-IR and Raman Microscopy on a United Platform,” Spectroscopy, vol. 18, no. 2, pp. 34–40, 2003.
  • M. Dronova, V. Lair, P. Vermaut, A. Ringuedé, V. An, “Study of ceria thin films prepared via electrochemical deposition: Role of selected electrochemical parameters on growth kinetics,” Thin Solid Films, vol. 693, 137674, 2020.
  • R. Murugan, G. Vijayaprasath, G. Ravi, “The influence of substrate temperature on the optical and micro structural properties of cerium oxide thin films deposited by RF sputtering,” Superlattices and Microstructures, vol. 85, pp. 321–330, 2015.
  • P. Dorenbos, “Crystal field splitting of lanthanide 4fn-1 5d-levels in inorganic compounds,” Journal of Alloys and Compounds, vol. 341, no. 1-2, pp. 156–159, 2002.
  • C. O. Avellaneda, M. A. C. Berton, L. O. S. Bulhoes, “Optical and electrochemical properties of CeO2 thin film prepared by an alkoxide route,” Solar Energy Materials and Solar Cells, vol. 92, no. 2, pp. 240–244, 2008.
There are 43 citations in total.

Details

Primary Language English
Subjects Structural Properties of Condensed Matter, Material Production Technologies
Journal Section Research Articles
Authors

Murat Kellegöz 0000-0001-6614-0805

Sema Kurtaran 0000-0003-2069-4719

Early Pub Date December 20, 2024
Publication Date
Submission Date October 27, 2023
Acceptance Date December 14, 2024
Published in Issue Year 2024 Volume: 28 Issue: 6

Cite

APA Kellegöz, M., & Kurtaran, S. (2024). Optical and Morphology Mechanism of CeO2 Thin Films Prepared by Ultrasonic Spray Pyrolysis Method. Sakarya University Journal of Science, 28(6), 1285-1295. https://doi.org/10.16984/saufenbilder.1381531
AMA Kellegöz M, Kurtaran S. Optical and Morphology Mechanism of CeO2 Thin Films Prepared by Ultrasonic Spray Pyrolysis Method. SAUJS. December 2024;28(6):1285-1295. doi:10.16984/saufenbilder.1381531
Chicago Kellegöz, Murat, and Sema Kurtaran. “Optical and Morphology Mechanism of CeO2 Thin Films Prepared by Ultrasonic Spray Pyrolysis Method”. Sakarya University Journal of Science 28, no. 6 (December 2024): 1285-95. https://doi.org/10.16984/saufenbilder.1381531.
EndNote Kellegöz M, Kurtaran S (December 1, 2024) Optical and Morphology Mechanism of CeO2 Thin Films Prepared by Ultrasonic Spray Pyrolysis Method. Sakarya University Journal of Science 28 6 1285–1295.
IEEE M. Kellegöz and S. Kurtaran, “Optical and Morphology Mechanism of CeO2 Thin Films Prepared by Ultrasonic Spray Pyrolysis Method”, SAUJS, vol. 28, no. 6, pp. 1285–1295, 2024, doi: 10.16984/saufenbilder.1381531.
ISNAD Kellegöz, Murat - Kurtaran, Sema. “Optical and Morphology Mechanism of CeO2 Thin Films Prepared by Ultrasonic Spray Pyrolysis Method”. Sakarya University Journal of Science 28/6 (December 2024), 1285-1295. https://doi.org/10.16984/saufenbilder.1381531.
JAMA Kellegöz M, Kurtaran S. Optical and Morphology Mechanism of CeO2 Thin Films Prepared by Ultrasonic Spray Pyrolysis Method. SAUJS. 2024;28:1285–1295.
MLA Kellegöz, Murat and Sema Kurtaran. “Optical and Morphology Mechanism of CeO2 Thin Films Prepared by Ultrasonic Spray Pyrolysis Method”. Sakarya University Journal of Science, vol. 28, no. 6, 2024, pp. 1285-9, doi:10.16984/saufenbilder.1381531.
Vancouver Kellegöz M, Kurtaran S. Optical and Morphology Mechanism of CeO2 Thin Films Prepared by Ultrasonic Spray Pyrolysis Method. SAUJS. 2024;28(6):1285-9.