Research Article
BibTex RIS Cite

Comparison of Integral Equation Formulations for Stokesian Particulate Flow Simulations

Year 2025, Volume: 29 Issue: 1, 18 - 26
https://doi.org/10.16984/saufenbilder.1533782

Abstract

Particulate Stokesian flows describe the hydrodynamics of rigid or deformable particles within Stokes flows, where viscous forces dominate over inertial effects. These flows are characterized by highly nonlinear fluid-structure interactions, moving interfaces, and multiple spatial and temporal scales, making numerical simulations both complex and computationally expensive. Accurately capturing these interactions requires sophisticated numerical approaches. The boundary integral equation method (BIEM) is a powerful tool for modeling such flows, as it reduces computational complexity by limiting the discretization to the immersed particle boundaries rather than the entire flow domain. This efficiency makes BIEM particularly suitable for studying systems with many particles or complex boundary geometries. In this work, we explore two fundamental BIEM formulations for Stokesian flows involving rigid particles: the first-kind and second-kind integral equations. These formulations differ in their mathematical structure and computational properties, impacting their stability, accuracy, and overall performance. By comparing these two approaches, we aim to highlight their respective advantages and limitations, providing insights into their applicability to different particulate flow scenarios. This analysis contributes to the broader understanding of numerical methods for Stokesian flows, addressing challenges inherent to fluid-structure interactions and advancing computational techniques in this field.

References

  • E. Lauga, T. R. Powers, “The hydrodynamics of swimming microorganisms,” Rep. Prog. Phys. 72, 096601, 2009.
  • J. Happel, H. Brenner, “Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media,” Springer, Berlin, 2012.
  • D. Barthes-Biesel, “Microhydrodynamics and Complex Fluids,” CRC, Boca Raton, FL, 2012.
  • J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine, P. M. Chaikin, “Living crystals of light-activated colloidal surfers,” Science 339 (6122), 2013, pp.936-940.
  • W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St. Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert, V. H. Crespi, “Catalytic Nanomotors: Autonomous Movement of Striped Nanorods,” Journal of the American Chemical Society 126(41),2004, pp.13424-13431.
  • J. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, “Self-Motile Colloidal Particles: From Directed Propulsion to Random Walk,” Physical Review Letters 99(4), 2007, pp.48102.
  • S. J. Ebbens, J. R. Howse, “In pursuit of propulsion at the nanoscale,” Soft Matter 6(4), 2010, pp.726-738.
  • S. Ghose, R. Adhikari, “Irreducible representations of oscillatory and swirling flows in active soft matter,” Physical Review Letters. 112, 2014, pp.118102.
  • B. Delmotte, E. E. Keaveny, F. Plouraboue, E. Climent, “Large-scale simulation of steady and time-dependent active suspensions with the force-coupling method,” Journal of Computational Physics. 302, 2015, pp.524-547.
  • A. Pandey, P. B. S. Kumar, R. Adhikari, “Fow-induced nonequilibrium self-assembly in suspensions of stiff, apolar, active filaments,” Soft Matter 12, 2016, pp.9068-9076.
  • D. Lindbo, A-K. Tornberg, “Spectrally accurate fast summation for periodic Stokes potentials,” Journal of Computational Physics. 229(23), 2010, pp.8994-9010.
  • S. Kim, S. J. Karrila, “Microhydrodynamics: Principles and selected applications,” Courier Corporation, 2013.
  • C. Pozrikidis, “Boundary integral and singularity methods for linearized viscous flow,” Cambridge University Press, 1992.
  • A-K. Tornberg, L. Greengard, “A fast multipole method for the three-dimensional Stokes equations,” Journal of Computational Physics. 227(3), 2008, pp.1613-1619.
  • M. Rachh, L. Greengards, “Integral equation methods for elastance and mobility problems in two dimensions,” SIAM Journal on Numerical Analysis 54(5), 2016, pp.2889-2909.
  • E. Corona, L. Greengards, M. Rachh, S. Veerapaneni, “An integral equation formulation for rigid bodies in Stokes flow in three dimensions,” Journal of Computational Physics. 332, 2017, pp.504-519.
  • D. J. Smith, “A boundary element regularized Stokeslet method applied to cilia-and-flagella-driven flow,” Proceed. of the Royal Society of London A 465(2112), 2009, pp.3605-3626.
  • H. Power, G. Miranda, “Second Kind Integral Equation Formulation of Stokes’ Flows Past a Particle of Arbitrary Shape,” SIAM Journal on Applied Mathematics 47(4), 1987, pp.689-698.
  • G. Kabacaoğlu, B. Quaife, G. Biros, “Low-resolution simulations of vesicle suspensions in 2D,” Journal of Computational Physics. 357(43), 2018, pp.43-77.
  • E. Corona, S. Veerapaneni, “Boundary integral equation analysis for suspension of spheres in Stokes flow,” Journal of Computational Physics. 362, 2018, pp.327-345.
  • B. K. Alpert, “Hybrid Gauss-trapezoidal quadrature rules,” SIAM Journal of Scientific Computing. 20, 1999, pp.1551-1584.
  • G. K. Youngren, A. Acrivos, “Stokes flow past a particle of arbitrary shape: a numerical method of solution,” Journal of Fluid Mechanics 69(2), 1975, pp.377-403.
  • A. Rahimian, S. K. Veerapaneni, G. Biros, “Dynamic simulation of locally inextensible vesicles suspended in an arbitrary two-dimensional domain, a boundary integral method,” Journal of Computational Physics. 229, 2010, pp.6466-6484.

Stokezyen Partikül Akış Simülasyonları için İntegral Denklem Formülasyonlarının Karşılaştırılması

Year 2025, Volume: 29 Issue: 1, 18 - 26
https://doi.org/10.16984/saufenbilder.1533782

Abstract

Partikül Stokezyen akışlar, viskoz kuvvetlerin atalet etkilerine baskın olduğu Stokes akışları içindeki katı veya deforme olabilen partiküllerin hidrodinamiğini tanımlar. Bu akışlar, doğrusal olmayan akışkan-yapı etkileşimleri, hareketli arayüzler ve sayısal simülasyonları hem karmaşık hem de hesaplama açısından pahalı hale getiren çoklu uzamsal ve zamansal ölçeklerle karakterize edilir. Bu etkileşimleri doğru bir şekilde yakalamak, sofistike sayısal yaklaşımlar gerektirir. Sınır integral denklem yöntemi (BIEM), ayrıklaştırmayı tüm akış alanı yerine daldırılmış parçacık sınırlarıyla sınırlandırarak hesaplama karmaşıklığını azalttığı için bu tür akışları modellemek için güçlü bir araçtır. Bu verimlilik, BIEM'i özellikle çok sayıda parçacığa veya karmaşık sınır geometrilerine sahip sistemlerin incelenmesi için uygun hale getirmektedir. Bu çalışmada, katı parçacıklar içeren Stokezyen akışlar için iki temel BIEM formülasyonunu araştırıyoruz: birinci tür ve ikinci tür integral denklemler. Bu formülasyonlar matematiksel yapıları ve hesaplama özellikleri bakımından farklılık göstermekte, kararlılıklarını, doğruluklarını ve genel performanslarını etkilemektedir. Bu iki yaklaşımı karşılaştırarak, farklı partikül akış senaryolarına uygulanabilirlikleri hakkında içgörüler sağlayarak, ilgili avantajlarını ve sınırlamalarını vurgulamayı amaçlıyoruz. Bu analiz, Stokezyen akışlar için sayısal yöntemlerin daha geniş bir şekilde anlaşılmasına katkıda bulunmakta, akışkan-yapı etkileşimlerine özgü zorlukları ele almakta ve bu alandaki hesaplama tekniklerini ilerletmektedir.

References

  • E. Lauga, T. R. Powers, “The hydrodynamics of swimming microorganisms,” Rep. Prog. Phys. 72, 096601, 2009.
  • J. Happel, H. Brenner, “Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media,” Springer, Berlin, 2012.
  • D. Barthes-Biesel, “Microhydrodynamics and Complex Fluids,” CRC, Boca Raton, FL, 2012.
  • J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine, P. M. Chaikin, “Living crystals of light-activated colloidal surfers,” Science 339 (6122), 2013, pp.936-940.
  • W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St. Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert, V. H. Crespi, “Catalytic Nanomotors: Autonomous Movement of Striped Nanorods,” Journal of the American Chemical Society 126(41),2004, pp.13424-13431.
  • J. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, “Self-Motile Colloidal Particles: From Directed Propulsion to Random Walk,” Physical Review Letters 99(4), 2007, pp.48102.
  • S. J. Ebbens, J. R. Howse, “In pursuit of propulsion at the nanoscale,” Soft Matter 6(4), 2010, pp.726-738.
  • S. Ghose, R. Adhikari, “Irreducible representations of oscillatory and swirling flows in active soft matter,” Physical Review Letters. 112, 2014, pp.118102.
  • B. Delmotte, E. E. Keaveny, F. Plouraboue, E. Climent, “Large-scale simulation of steady and time-dependent active suspensions with the force-coupling method,” Journal of Computational Physics. 302, 2015, pp.524-547.
  • A. Pandey, P. B. S. Kumar, R. Adhikari, “Fow-induced nonequilibrium self-assembly in suspensions of stiff, apolar, active filaments,” Soft Matter 12, 2016, pp.9068-9076.
  • D. Lindbo, A-K. Tornberg, “Spectrally accurate fast summation for periodic Stokes potentials,” Journal of Computational Physics. 229(23), 2010, pp.8994-9010.
  • S. Kim, S. J. Karrila, “Microhydrodynamics: Principles and selected applications,” Courier Corporation, 2013.
  • C. Pozrikidis, “Boundary integral and singularity methods for linearized viscous flow,” Cambridge University Press, 1992.
  • A-K. Tornberg, L. Greengard, “A fast multipole method for the three-dimensional Stokes equations,” Journal of Computational Physics. 227(3), 2008, pp.1613-1619.
  • M. Rachh, L. Greengards, “Integral equation methods for elastance and mobility problems in two dimensions,” SIAM Journal on Numerical Analysis 54(5), 2016, pp.2889-2909.
  • E. Corona, L. Greengards, M. Rachh, S. Veerapaneni, “An integral equation formulation for rigid bodies in Stokes flow in three dimensions,” Journal of Computational Physics. 332, 2017, pp.504-519.
  • D. J. Smith, “A boundary element regularized Stokeslet method applied to cilia-and-flagella-driven flow,” Proceed. of the Royal Society of London A 465(2112), 2009, pp.3605-3626.
  • H. Power, G. Miranda, “Second Kind Integral Equation Formulation of Stokes’ Flows Past a Particle of Arbitrary Shape,” SIAM Journal on Applied Mathematics 47(4), 1987, pp.689-698.
  • G. Kabacaoğlu, B. Quaife, G. Biros, “Low-resolution simulations of vesicle suspensions in 2D,” Journal of Computational Physics. 357(43), 2018, pp.43-77.
  • E. Corona, S. Veerapaneni, “Boundary integral equation analysis for suspension of spheres in Stokes flow,” Journal of Computational Physics. 362, 2018, pp.327-345.
  • B. K. Alpert, “Hybrid Gauss-trapezoidal quadrature rules,” SIAM Journal of Scientific Computing. 20, 1999, pp.1551-1584.
  • G. K. Youngren, A. Acrivos, “Stokes flow past a particle of arbitrary shape: a numerical method of solution,” Journal of Fluid Mechanics 69(2), 1975, pp.377-403.
  • A. Rahimian, S. K. Veerapaneni, G. Biros, “Dynamic simulation of locally inextensible vesicles suspended in an arbitrary two-dimensional domain, a boundary integral method,” Journal of Computational Physics. 229, 2010, pp.6466-6484.
There are 23 citations in total.

Details

Primary Language English
Subjects Numerical and Computational Mathematics (Other)
Journal Section Research Articles
Authors

Gökberk Kabacaoğlu 0000-0002-5574-1629

Early Pub Date February 12, 2025
Publication Date
Submission Date August 15, 2024
Acceptance Date January 16, 2025
Published in Issue Year 2025 Volume: 29 Issue: 1

Cite

APA Kabacaoğlu, G. (2025). Comparison of Integral Equation Formulations for Stokesian Particulate Flow Simulations. Sakarya University Journal of Science, 29(1), 18-26. https://doi.org/10.16984/saufenbilder.1533782
AMA Kabacaoğlu G. Comparison of Integral Equation Formulations for Stokesian Particulate Flow Simulations. SAUJS. February 2025;29(1):18-26. doi:10.16984/saufenbilder.1533782
Chicago Kabacaoğlu, Gökberk. “Comparison of Integral Equation Formulations for Stokesian Particulate Flow Simulations”. Sakarya University Journal of Science 29, no. 1 (February 2025): 18-26. https://doi.org/10.16984/saufenbilder.1533782.
EndNote Kabacaoğlu G (February 1, 2025) Comparison of Integral Equation Formulations for Stokesian Particulate Flow Simulations. Sakarya University Journal of Science 29 1 18–26.
IEEE G. Kabacaoğlu, “Comparison of Integral Equation Formulations for Stokesian Particulate Flow Simulations”, SAUJS, vol. 29, no. 1, pp. 18–26, 2025, doi: 10.16984/saufenbilder.1533782.
ISNAD Kabacaoğlu, Gökberk. “Comparison of Integral Equation Formulations for Stokesian Particulate Flow Simulations”. Sakarya University Journal of Science 29/1 (February 2025), 18-26. https://doi.org/10.16984/saufenbilder.1533782.
JAMA Kabacaoğlu G. Comparison of Integral Equation Formulations for Stokesian Particulate Flow Simulations. SAUJS. 2025;29:18–26.
MLA Kabacaoğlu, Gökberk. “Comparison of Integral Equation Formulations for Stokesian Particulate Flow Simulations”. Sakarya University Journal of Science, vol. 29, no. 1, 2025, pp. 18-26, doi:10.16984/saufenbilder.1533782.
Vancouver Kabacaoğlu G. Comparison of Integral Equation Formulations for Stokesian Particulate Flow Simulations. SAUJS. 2025;29(1):18-26.

33418 30939     30940 30943 30941  30942  33255  33252  33253  33254

30944  30945  30946


30930Bu eser Creative Commons Atıf-Ticari Olmayan 4.0 Uluslararası Lisans   kapsamında lisanslanmıştır .