Research Article
BibTex RIS Cite

Structural Properties and Bandgap Energy of Ga-doped Garnet-type Li7La3Zr2O12 (LLZO) Solid Electrolyte Depending on Sintering Atmosphere

Year 2025, Volume: 29 Issue: 2, 160 - 170, 30.04.2025
https://doi.org/10.16984/saufenbilder.1590407

Abstract

Developing solid-state batteries for higher energy densities and safety has been a popular research subject in recent years. Since their first report, Li7La3Zr2O12 (LLZO) solid electrolytes have attracted extended attention due to their high ionic conductivity, chemical stability, and wide electrochemical window. Although LLZO fulfills all the requirements for high energy density and a longer lifespan, its intrinsic electronic conductivity accelerates the Li dendrite growth short-circuiting the battery. In this study, we have applied air and oxygen sintering atmospheres to prepare two types of Ga-doped LLZO pellets, to identify the effect of sintering atmospheres on the physical properties such as crystal phase, ionic conductivity, roughness, and electronic band gap energy (Eg). Both the crystal structures were found to be in cubic phase with a relatively small amount of secondary phase impurities. On the other hand, the oxygen-sintered sample showed better properties with high ionic conductivity of 1.04x10-4 Scm-1, lower surface root-mean-square roughness of 0.1833 µm, and a relative density of 90.5%. Furthermore, the electronic indirect band gap energy of the oxygen-sintered sample was larger, Eg=5.77 eV, which is desired for lower electrical conductivity. It is important to note that the precise determination of Eg values of powders would be erroneous through Ultraviolet-Visible (UV-Vis) absorption spectroscopy due to the scattering effects of solids. So, to the best of our knowledge, for the first time, this study reports Eg values of oxygen and air-sintered LLZO determined by the Kubelka-Munk model on Ultraviolet-Visible-Near Infra-Red (UV-Vis-NIR) diffuse reflectance spectroscopy.

Project Number

21406002

References

  • A. Machín, C. Morant, F. Márquez, “Advancements and Challenges in Solid-State Battery Technology: An In-Depth Review of Solid Electrolytes and Anode Innovations,” Batteries, vol. 10, no. 1, pp. 29, 2024.
  • W. Feng, Y. Zhao, Y. Xia, “Solid Interfaces for the Garnet Electrolytes,” Advanced Materials, vol. 36, pp. 2306111, 2024.
  • F. Öksüzoğlu, Ş. Ateş, O. M. Özkendir, G. Çelik, Y. R. Eker, H. Baveghar, “Structure and ionic conductivity of NASICON-type LATP solid electrolyte synthesized by the solid-state method,” Ceramics International, 2024.
  • S. Saran, Y. R. Eker, Ş. Ateş, G. Çelik, H. Baveghar, O. M. Özkendir, W. Klysubun, “The effect of Ti to the crystal structure of Li7-3xMxLa3Zr1.8Ti0.2O12 (M=Ga, In) garnet-type solid electrolytes as a second dopant,” Advances in Applied Ceramics, vol. 121, pp. 238-246, 2022.
  • S. Saran, O. M. Özkendir, Ü. Atav, “The effect of two different substituted atoms in lithium positions on the structure of garnet-type solid electrolytes,” Turkish Journal of Physics, vol. 45, no. 3, pp. 148-158, 2021.
  • Y. Li, Z. Cao, Z. Jiang, Y. Cao, J. Liu, L. Wang, “Synergistic effect of Ga and Yb co-doping on the structure and ionic conductivity of Li7La3Zr2O12 ceramics,” Ionics, vol. 28, pp. 5321-5331, 2022.
  • W. Xia, B. Xu, H. Duan, Y. Guo, H. Kang, Li, H. Liu, “Ionic conductivity and air stability of Al-doped Li7La3Zr2O12 sintered in alumina and Pt crucibles,” ACS applied materials & interfaces, vol.8, no. 8, pp. 5335-5342, 2016.
  • S. Saran, Y. R. Eker, “Synthesis, structural and conductive properties of Nd doped garnet-type Li7La3Zr2O12 Li-ion conductor,” Current Applied Physics, vol. 41, pp.1-6, 2022.
  • C. Li, Y. Qiu, Y. Zhao, W. Feng, “Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery,” Chinese Chemical Letters, vol. 35, no. 4, pp. 108846, 2024.
  • M. Philipp, B. Gadermaier, P. Posch, I. Hanzu, S. Ganschow, M. Meven, D. Rettenwander, G. J. Redhammer, H. M. R. Wilkening, “The Electronic Conductivity of Single Crystalline Ga-Stabilized Cubic Li7La3Zr2O12: A Technologically Relevant Parameter for All-Solid-State Batteries,” Advanced Materials Interfaces, vol. 7, pp. 2000450, 2020.
  • K. Kerman, A. Luntz, V. Viswanathan, Y. M. Chiang, Z. B. Chen, “Review-practical challenges hindering the development of solid-state Li-ion batteries,” Journal of Electrochemical Society, vol. 164, pp. A1731–A1744, 2017.
  • C. L. Tsai, V. Roddatis, C. V. Chandran, Q. Ma, S. Uhlenbruck, M. Bram, P. Heitjans, O. Guillon, “Li7La3Zr2O12 interface modification for Li dendrite prevention,” ACS Applied Materials Interfaces, vol. 8, pp. 10617-10626, 2016.
  • A. Sharafi, E. Kazyak, A. L. Davis, S. Yu, T. Thompson, D. J. Siegel, N. P. Dasgupta, J. Sakamoto, “Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12,” Chemistry of Materials, 29, 7961-7968, 2017.
  • F. Han, A. S. Westover, J. Yue, X. Fan, F. Wang, M. Chi, D. N. Leonard, N. J. Dudney, H. Wang, C. Wang, “High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes, ”Nature Energy, vol. 4, pp. 187-196, 2019.
  • C. Du, Z. Li, Z. Fang, X. Fang, X. Ji, Z. Zhao, D. Liu, R. Li, X. Xiang, H. Yang, “Constructing a three-dimensional continuous grain boundary with lithium-ion conductivity and electron blocking property in LLZO to suppress lithium dendrites,” Journal of Alloys and Compounds, vol. 1003, pp. 175769, 2024.
  • X. Xiang, Z. Fang, C. Du, Z. Zhao, J. Chen, Y. Zhang, Q. Shen, “Constructing electron-blocking grain boundaries in garnet to suppress lithium dendrite growth,” Journal of Advanced Ceramics, vol. 13, no. 2, pp. 166-175, 2024.
  • C. Xu, Y. Xue, M. Zhang, N. Liao, “Atomic-level designed LLZO electrolyte for LTO electrode in all-solid-state batteries with superb interfacial properties,” Surfaces and Interfaces, vol. 40, pp. 103128, 2023.
  • T. Thompson, S. Yu, L. Williams, R. D. Schmidt, R. Garcia-Mendez, J. Wolfenstine, J. Sakamoto, “Electrochemical window of the Li-ion solid electrolyte Li7La3Zr2O12,” ACS Energy Letters, vol. 2, no. 2, pp. 462-468, 2017.
  • K. Ajith, P. C. Selvin, K. P. Abhilash, P. Sivaraj, B. Nalini, G. G. Soundarya, “A correlative study on electrochemical and optical properties of LLZO (Li7La3Zr2O12) garnet electrolyte,” Materials Today: Proceedings, vol. 50, pp. 2836-2839, 2022.
  • A. Escobedo-Morales, I. I. Ruiz-López, M. D. Ruiz-Peralta, L. Tepech-Carrillo, M. Sánchez-Cantú, J. E. Moreno-Orea, “Automated method for the determination of the band gap energy of pure and mixed powder samples using diffuse reflectance spectroscopy,” Heliyon, vol. 5, no. 4, 2019.
  • A. E. Morales, E. S. Mora, U. Pal, “Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures,” Revista mexicana de física, vol. 53, no. 5, pp. 18-22, 2007.
  • H. Lü, X. Chen, Q. Sun, N. Zhao, X. Guo, “Uniform garnet nanoparticle dispersion in composite polymer electrolytes, ”Acta Physico-Chimica Sinica, pp. 2305016, 2024.
  • T. Eickhoff, P. Grosse, W. Theiss, “Diffuse reflectance spectroscopy of powders,” Vibrational spectroscopy, vol. 1, no. 2, pp. 229-233, 1990.
  • H. Ranjan Sahu, G. Ranga Rao, “Characterization of combustion synthesized zirconia powder by UV-vis, IR and other techniques,” Bulletin of Materials Science, vol. 23, pp. 349-354, 2000.
  • E. O. Filatova, A. S. Konashuk, “Interpretation of the changing the band gap of Al2O3 depending on its crystalline form: connection with different local symmetries,” The Journal of Physical Chemistry C, vol. 119, no. 35, pp. 20755-20761, 2015.
  • S. Rezaee, H. Araghi, H. Noshad, Z. Zabihi, “Physical characteristics of fluorine-doped lithium oxide as advanced material for solid-electrolyte-interphase applications of lithium-air batteries,” The European Physical Journal Plus, vol. 137, no. 1194, 2022.
  • L. Robben, R. Merzlyakova, P. Heitjans, T. M. Gesing, “Symmetry reduction due to gallium substitution in the garnet Li6.43(2) Ga0.52 (3) La2. 67 (4) Zr2O12,” Acta Crystallographica Section E: Crystallographic Communications, vol. 72, no. 3, pp. 287-289, 2016.
  • Ç. Kaya, F. Bondino, E. Magnano, H. Gündoğmuş, I. Ulfat, W. Klysubun, O. M. Ozkendir, “Influence of Gallium Substitution on the Crystal and Electronic Properties of Li5Ca1-xGaxLa3Zr2O12 Solid State Battery Electrolyte,” Journal of Electron Spectroscopy and Related Phenomena, vol. 226, pp. 45-52, 2018.
  • M. Matsui, K. Takahashi, K. Sakamoto, Hirano, Y. Takeda, O. Yamamoto, N. Imanishi, “Phase stability of a garnet-type lithium ion conductor Li7La3Zr2O12,” Dalton Transactions, vol. 43, no. 3, pp.1019-1024, 2024.
  • F. Shen, W. Guo, D. Zeng, Z. Sun, J. Gao, J. Li, X. Han, “A simple and highly efficient method toward high-density garnet-type LLZTO solid-state electrolyte,” ACS applied materials & interfaces, vol. 12, no. 27, pp. 30313-30319, 2020.
  • Y. Li, Z. Wang, C. Li, Y. Cao, X. Guo, “Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering,” Journal of Power sources, vol. 248, pp. 642-646, 2014.
  • B. P. Dubey, A. Sahoo, V. Thangadurai, Y. Sharma, “Morphological, dielectric and transport properties of garnet-type Li6.25+yAl0.25La3Zr2-yMnyO12 (y= 0, 0.05, 0.1, and 0.2),” Solid State Ionics, vol. 351, pp. 115339, 2020.
  • A. B. Gadkari, T. J. Shinde, P. N. Vasambekar, “Structural analysis of Sm3+ doped nanocrystalline Mg-Cd ferrites prepared by oxalate co-precipitation method,” Materials characterization, vol. 60, no. 11, pp. 1328-1333, 2009.
  • W. Feng, X. Dong, P. Li, Y. Wang, Y. Xia, “Interfacial modification of Li/Garnet electrolyte by a lithiophilic and breathing interlayer,” Journal of Power Sources, vol. 419, pp. 91-98, 2019.
  • V. Raj, K. G. Naik, B. S. Vishnugopi, A. K. Rana, A. S. Manning, S. R. Mahapatra, D. Mitlin, “Dendrite Growth-Microstructure-Stress-Interrelations in Garnet Solid‐State Electrolyte,” Advanced Energy Materials, vol. 14, no. 15, pp. 2303062, 2024.
  • A. Baniya, A. Gurung, J. Pokharel, K. Chen, R. Pathak, B. S. Lamsal, Q. Qiao, “Mitigating interfacial mismatch between lithium metal and garnet-type solid electrolyte by depositing metal nitride lithiophilic interlayer,” ACS Applied Energy Materials, vol. 5, no. 1, pp. 648-657, 2022.
  • J. Zhang, R. Yu, J. Li, H. Zhai, G. Tan, X. Tang, “Transformation of undesired Li2CO3 into lithiophilic layer via double replacement reaction for garnet electrolyte engineering,” Energy & Environmental Materials, vol. 5, no. 3, pp. 962-968, 2022.
  • H. Huo, Y. Chen, N. Zhao, X. Lin, J. Luo, X. Yang, X. Sun, “In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries,” Nano Energy, vol. 61, pp. 119-125, 2019.
  • F. Du, T. Liao, T. Ye, Y. Wu, G. Guo, K. Zhu, Z. Xie, “Room-temperature, all-solid-state lithium metal batteries enabled by a moderate-temperature formation method,” Journal of Materials Science, vol. 1, no. 10, 2022.
  • L. Wang, Y. Lu, C. Zheng, M. Cai, F. Xu, Z. Wen, “In Situ Construction of a Lithiophilic and Electronically Insulating Multifunctional Hybrid Layer Based on the Principle of Hydrolysis for a Stable Garnet/Li Interface,” Advanced Functional Materials, pp. 2402971, 2024.
  • S. Gunaydin, H. Miyazaki, S. Saran, H. Baveghar, G. Celik, M. Harfouche, M. Abdellatief, O. M. Ozkendir, “The Effect of CrFe2O4 Addition on the Ionic Conductivity Properties of Manganese-Substituted LiFeO2 Material, ”Journal of Electronic Materials, vol. 53, pp. 367-379, 2024.
  • F. Öksüzoğlu, S. Ateş, O. M. Özkendir, G. Çelik, Y. R. Eker, H. Baveghar, M. A. Basyooni-M. Kabatas, “The Impact of Boron Compounds on the Structure and Ionic Conductivity of LATP Solid Electrolytes,” Materials, vol. 17, pp. 3846, 2024.
  • S. Landi Jr, I. R. Segundo, E. Freitas, M. Vasilevskiy, J. Carneiro, C. J. Tavares, “Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements,” Solid state communications, vol. 341, pp. 114573, 2022.
  • P. Makuła, M. Pacia, W. Macyk, “How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra,” The journal of physical chemistry letters, vol. 9, no. 23, pp. 6814-6817, 2018.
  • A. Sarkar, C. Loho, L. Velasco, T. Thomas, S. S. Bhattacharya, H. Hahn, R. Djenadic, “Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency,” Dalton transactions, vol. 46, no. 36, pp. 12167-12176, 2017.
  • N. Kuganathan, M. J. Rushton, R. W. Grimes, J. A. Kilner, E. I. Gkanas, A. Chroneos, “Self-diffusion in garnet-type Li7La3Zr2O12 solid electrolytes,” Scientific Reports, vol. 11, no. 1, pp. 451, 2021.
  • Z. Ma, B. Zhao, W. Li, S. Jiao, W. Gong, H. Qiu, M. Yu, “Effects of fabrication atmosphere conditions on the physico-chemical properties of garnet electrolyte,” Ionics, vol. 28, no. 6, pp. 2673-2683, 2022.
  • X. Ping, Q. Zheng, B. Meng, W. Lin, Y. Chen, C. Fang, W. Liang, “Influence of sintering atmosphere on the phase, microstructure, and lithium-ion conductivity of the Al-doped Li7La3Zr2O12 solid electrolyte,” Ceramics International, vol. 48, no. 18, pp. 25689-25695, 2022.

Ga-katkılı garnet-benzeri Li7La3Zr2O12 (LLZO) katı elektrolitinin sinterleme atmosferine bağlı olarak optik, yapısal ve iletkenlik özellikleri

Year 2025, Volume: 29 Issue: 2, 160 - 170, 30.04.2025
https://doi.org/10.16984/saufenbilder.1590407

Abstract

Daha yüksek enerji yoğunluklu ve güvenlikli katıhal pilleri geliştirmek son yıllarda popüler bir araştırma konusu olmuştur. İlk raporlarından bu yana, Li7La3Zr2O12 (LLZO) katı elektrolitleri yüksek iyonik iletkenlikleri, kimyasal kararlılıkları ve geniş elektrokimyasal pencereleri nedeniyle oldukça ilgi görmektedir. LLZO, pillerde yüksek enerji yoğunluğu ve daha uzun bir kullanım ömrü için tüm gereklilikleri karşılasa da sahip olduğu elektronik iletkenliği, Li dendrit büyümesini hızlandırarak pilin kısa devre yapmasına neden olur. Bu çalışmada, ısıl işlem atmosferlerinin kristal faz, iyonik iletkenlik, pürüzlülük ve elektronik bant aralığı enerjisi (Eg) gibi fiziksel özellikler üzerindeki etkisini belirlemek için iki tür Ga-katkılı LLZO peleti hava ve oksijen atmosferlerinde sinterlenmiştir. Her iki kristal yapının da safsızlık olmaksızın kübik fazda oluştuğu belirlenmiştir. Öte yandan, oksijen altında sinterlenmiş numune daha yüksek bir iyonik iletkenlik, 1.04x10-4 Scm-1, daha düşük bir yüzey pürüzlülüğü, 0.1833 µm ve %90.5’ lik bir bağıl yoğunluk ile daha iyi özellikler göstermiştir. Ayrıca, oksijen altında sinterlenmiş numunenin elektronik bant aralığı enerjisi daha yüksek olarak belirlenmiştir, Eg = 5.77 eV. Elektromanyetik dalgaların saçılma etkilerinden dolayı toz numunelerin Eg değerlerinin Morötesi-Görünür (UV-Vis) soğurma spektroskopisi ile hassas bir şekilde belirlenmesinin hatalı olacağını belirtmek önemlidir. Bu nedenle, bildiğimiz kadarıyla, bu çalışmada ilk kez, LLZO’ nun Morötesi-Görünür-Yakın Kızılötesi (UV-Vis-NIR) dağınık yansıma spektroskopisi ile Eg değerleri Kubelka-Munk modeli kullanılarak belirlenmiştir.

Project Number

21406002

References

  • A. Machín, C. Morant, F. Márquez, “Advancements and Challenges in Solid-State Battery Technology: An In-Depth Review of Solid Electrolytes and Anode Innovations,” Batteries, vol. 10, no. 1, pp. 29, 2024.
  • W. Feng, Y. Zhao, Y. Xia, “Solid Interfaces for the Garnet Electrolytes,” Advanced Materials, vol. 36, pp. 2306111, 2024.
  • F. Öksüzoğlu, Ş. Ateş, O. M. Özkendir, G. Çelik, Y. R. Eker, H. Baveghar, “Structure and ionic conductivity of NASICON-type LATP solid electrolyte synthesized by the solid-state method,” Ceramics International, 2024.
  • S. Saran, Y. R. Eker, Ş. Ateş, G. Çelik, H. Baveghar, O. M. Özkendir, W. Klysubun, “The effect of Ti to the crystal structure of Li7-3xMxLa3Zr1.8Ti0.2O12 (M=Ga, In) garnet-type solid electrolytes as a second dopant,” Advances in Applied Ceramics, vol. 121, pp. 238-246, 2022.
  • S. Saran, O. M. Özkendir, Ü. Atav, “The effect of two different substituted atoms in lithium positions on the structure of garnet-type solid electrolytes,” Turkish Journal of Physics, vol. 45, no. 3, pp. 148-158, 2021.
  • Y. Li, Z. Cao, Z. Jiang, Y. Cao, J. Liu, L. Wang, “Synergistic effect of Ga and Yb co-doping on the structure and ionic conductivity of Li7La3Zr2O12 ceramics,” Ionics, vol. 28, pp. 5321-5331, 2022.
  • W. Xia, B. Xu, H. Duan, Y. Guo, H. Kang, Li, H. Liu, “Ionic conductivity and air stability of Al-doped Li7La3Zr2O12 sintered in alumina and Pt crucibles,” ACS applied materials & interfaces, vol.8, no. 8, pp. 5335-5342, 2016.
  • S. Saran, Y. R. Eker, “Synthesis, structural and conductive properties of Nd doped garnet-type Li7La3Zr2O12 Li-ion conductor,” Current Applied Physics, vol. 41, pp.1-6, 2022.
  • C. Li, Y. Qiu, Y. Zhao, W. Feng, “Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery,” Chinese Chemical Letters, vol. 35, no. 4, pp. 108846, 2024.
  • M. Philipp, B. Gadermaier, P. Posch, I. Hanzu, S. Ganschow, M. Meven, D. Rettenwander, G. J. Redhammer, H. M. R. Wilkening, “The Electronic Conductivity of Single Crystalline Ga-Stabilized Cubic Li7La3Zr2O12: A Technologically Relevant Parameter for All-Solid-State Batteries,” Advanced Materials Interfaces, vol. 7, pp. 2000450, 2020.
  • K. Kerman, A. Luntz, V. Viswanathan, Y. M. Chiang, Z. B. Chen, “Review-practical challenges hindering the development of solid-state Li-ion batteries,” Journal of Electrochemical Society, vol. 164, pp. A1731–A1744, 2017.
  • C. L. Tsai, V. Roddatis, C. V. Chandran, Q. Ma, S. Uhlenbruck, M. Bram, P. Heitjans, O. Guillon, “Li7La3Zr2O12 interface modification for Li dendrite prevention,” ACS Applied Materials Interfaces, vol. 8, pp. 10617-10626, 2016.
  • A. Sharafi, E. Kazyak, A. L. Davis, S. Yu, T. Thompson, D. J. Siegel, N. P. Dasgupta, J. Sakamoto, “Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12,” Chemistry of Materials, 29, 7961-7968, 2017.
  • F. Han, A. S. Westover, J. Yue, X. Fan, F. Wang, M. Chi, D. N. Leonard, N. J. Dudney, H. Wang, C. Wang, “High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes, ”Nature Energy, vol. 4, pp. 187-196, 2019.
  • C. Du, Z. Li, Z. Fang, X. Fang, X. Ji, Z. Zhao, D. Liu, R. Li, X. Xiang, H. Yang, “Constructing a three-dimensional continuous grain boundary with lithium-ion conductivity and electron blocking property in LLZO to suppress lithium dendrites,” Journal of Alloys and Compounds, vol. 1003, pp. 175769, 2024.
  • X. Xiang, Z. Fang, C. Du, Z. Zhao, J. Chen, Y. Zhang, Q. Shen, “Constructing electron-blocking grain boundaries in garnet to suppress lithium dendrite growth,” Journal of Advanced Ceramics, vol. 13, no. 2, pp. 166-175, 2024.
  • C. Xu, Y. Xue, M. Zhang, N. Liao, “Atomic-level designed LLZO electrolyte for LTO electrode in all-solid-state batteries with superb interfacial properties,” Surfaces and Interfaces, vol. 40, pp. 103128, 2023.
  • T. Thompson, S. Yu, L. Williams, R. D. Schmidt, R. Garcia-Mendez, J. Wolfenstine, J. Sakamoto, “Electrochemical window of the Li-ion solid electrolyte Li7La3Zr2O12,” ACS Energy Letters, vol. 2, no. 2, pp. 462-468, 2017.
  • K. Ajith, P. C. Selvin, K. P. Abhilash, P. Sivaraj, B. Nalini, G. G. Soundarya, “A correlative study on electrochemical and optical properties of LLZO (Li7La3Zr2O12) garnet electrolyte,” Materials Today: Proceedings, vol. 50, pp. 2836-2839, 2022.
  • A. Escobedo-Morales, I. I. Ruiz-López, M. D. Ruiz-Peralta, L. Tepech-Carrillo, M. Sánchez-Cantú, J. E. Moreno-Orea, “Automated method for the determination of the band gap energy of pure and mixed powder samples using diffuse reflectance spectroscopy,” Heliyon, vol. 5, no. 4, 2019.
  • A. E. Morales, E. S. Mora, U. Pal, “Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures,” Revista mexicana de física, vol. 53, no. 5, pp. 18-22, 2007.
  • H. Lü, X. Chen, Q. Sun, N. Zhao, X. Guo, “Uniform garnet nanoparticle dispersion in composite polymer electrolytes, ”Acta Physico-Chimica Sinica, pp. 2305016, 2024.
  • T. Eickhoff, P. Grosse, W. Theiss, “Diffuse reflectance spectroscopy of powders,” Vibrational spectroscopy, vol. 1, no. 2, pp. 229-233, 1990.
  • H. Ranjan Sahu, G. Ranga Rao, “Characterization of combustion synthesized zirconia powder by UV-vis, IR and other techniques,” Bulletin of Materials Science, vol. 23, pp. 349-354, 2000.
  • E. O. Filatova, A. S. Konashuk, “Interpretation of the changing the band gap of Al2O3 depending on its crystalline form: connection with different local symmetries,” The Journal of Physical Chemistry C, vol. 119, no. 35, pp. 20755-20761, 2015.
  • S. Rezaee, H. Araghi, H. Noshad, Z. Zabihi, “Physical characteristics of fluorine-doped lithium oxide as advanced material for solid-electrolyte-interphase applications of lithium-air batteries,” The European Physical Journal Plus, vol. 137, no. 1194, 2022.
  • L. Robben, R. Merzlyakova, P. Heitjans, T. M. Gesing, “Symmetry reduction due to gallium substitution in the garnet Li6.43(2) Ga0.52 (3) La2. 67 (4) Zr2O12,” Acta Crystallographica Section E: Crystallographic Communications, vol. 72, no. 3, pp. 287-289, 2016.
  • Ç. Kaya, F. Bondino, E. Magnano, H. Gündoğmuş, I. Ulfat, W. Klysubun, O. M. Ozkendir, “Influence of Gallium Substitution on the Crystal and Electronic Properties of Li5Ca1-xGaxLa3Zr2O12 Solid State Battery Electrolyte,” Journal of Electron Spectroscopy and Related Phenomena, vol. 226, pp. 45-52, 2018.
  • M. Matsui, K. Takahashi, K. Sakamoto, Hirano, Y. Takeda, O. Yamamoto, N. Imanishi, “Phase stability of a garnet-type lithium ion conductor Li7La3Zr2O12,” Dalton Transactions, vol. 43, no. 3, pp.1019-1024, 2024.
  • F. Shen, W. Guo, D. Zeng, Z. Sun, J. Gao, J. Li, X. Han, “A simple and highly efficient method toward high-density garnet-type LLZTO solid-state electrolyte,” ACS applied materials & interfaces, vol. 12, no. 27, pp. 30313-30319, 2020.
  • Y. Li, Z. Wang, C. Li, Y. Cao, X. Guo, “Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering,” Journal of Power sources, vol. 248, pp. 642-646, 2014.
  • B. P. Dubey, A. Sahoo, V. Thangadurai, Y. Sharma, “Morphological, dielectric and transport properties of garnet-type Li6.25+yAl0.25La3Zr2-yMnyO12 (y= 0, 0.05, 0.1, and 0.2),” Solid State Ionics, vol. 351, pp. 115339, 2020.
  • A. B. Gadkari, T. J. Shinde, P. N. Vasambekar, “Structural analysis of Sm3+ doped nanocrystalline Mg-Cd ferrites prepared by oxalate co-precipitation method,” Materials characterization, vol. 60, no. 11, pp. 1328-1333, 2009.
  • W. Feng, X. Dong, P. Li, Y. Wang, Y. Xia, “Interfacial modification of Li/Garnet electrolyte by a lithiophilic and breathing interlayer,” Journal of Power Sources, vol. 419, pp. 91-98, 2019.
  • V. Raj, K. G. Naik, B. S. Vishnugopi, A. K. Rana, A. S. Manning, S. R. Mahapatra, D. Mitlin, “Dendrite Growth-Microstructure-Stress-Interrelations in Garnet Solid‐State Electrolyte,” Advanced Energy Materials, vol. 14, no. 15, pp. 2303062, 2024.
  • A. Baniya, A. Gurung, J. Pokharel, K. Chen, R. Pathak, B. S. Lamsal, Q. Qiao, “Mitigating interfacial mismatch between lithium metal and garnet-type solid electrolyte by depositing metal nitride lithiophilic interlayer,” ACS Applied Energy Materials, vol. 5, no. 1, pp. 648-657, 2022.
  • J. Zhang, R. Yu, J. Li, H. Zhai, G. Tan, X. Tang, “Transformation of undesired Li2CO3 into lithiophilic layer via double replacement reaction for garnet electrolyte engineering,” Energy & Environmental Materials, vol. 5, no. 3, pp. 962-968, 2022.
  • H. Huo, Y. Chen, N. Zhao, X. Lin, J. Luo, X. Yang, X. Sun, “In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries,” Nano Energy, vol. 61, pp. 119-125, 2019.
  • F. Du, T. Liao, T. Ye, Y. Wu, G. Guo, K. Zhu, Z. Xie, “Room-temperature, all-solid-state lithium metal batteries enabled by a moderate-temperature formation method,” Journal of Materials Science, vol. 1, no. 10, 2022.
  • L. Wang, Y. Lu, C. Zheng, M. Cai, F. Xu, Z. Wen, “In Situ Construction of a Lithiophilic and Electronically Insulating Multifunctional Hybrid Layer Based on the Principle of Hydrolysis for a Stable Garnet/Li Interface,” Advanced Functional Materials, pp. 2402971, 2024.
  • S. Gunaydin, H. Miyazaki, S. Saran, H. Baveghar, G. Celik, M. Harfouche, M. Abdellatief, O. M. Ozkendir, “The Effect of CrFe2O4 Addition on the Ionic Conductivity Properties of Manganese-Substituted LiFeO2 Material, ”Journal of Electronic Materials, vol. 53, pp. 367-379, 2024.
  • F. Öksüzoğlu, S. Ateş, O. M. Özkendir, G. Çelik, Y. R. Eker, H. Baveghar, M. A. Basyooni-M. Kabatas, “The Impact of Boron Compounds on the Structure and Ionic Conductivity of LATP Solid Electrolytes,” Materials, vol. 17, pp. 3846, 2024.
  • S. Landi Jr, I. R. Segundo, E. Freitas, M. Vasilevskiy, J. Carneiro, C. J. Tavares, “Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements,” Solid state communications, vol. 341, pp. 114573, 2022.
  • P. Makuła, M. Pacia, W. Macyk, “How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra,” The journal of physical chemistry letters, vol. 9, no. 23, pp. 6814-6817, 2018.
  • A. Sarkar, C. Loho, L. Velasco, T. Thomas, S. S. Bhattacharya, H. Hahn, R. Djenadic, “Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency,” Dalton transactions, vol. 46, no. 36, pp. 12167-12176, 2017.
  • N. Kuganathan, M. J. Rushton, R. W. Grimes, J. A. Kilner, E. I. Gkanas, A. Chroneos, “Self-diffusion in garnet-type Li7La3Zr2O12 solid electrolytes,” Scientific Reports, vol. 11, no. 1, pp. 451, 2021.
  • Z. Ma, B. Zhao, W. Li, S. Jiao, W. Gong, H. Qiu, M. Yu, “Effects of fabrication atmosphere conditions on the physico-chemical properties of garnet electrolyte,” Ionics, vol. 28, no. 6, pp. 2673-2683, 2022.
  • X. Ping, Q. Zheng, B. Meng, W. Lin, Y. Chen, C. Fang, W. Liang, “Influence of sintering atmosphere on the phase, microstructure, and lithium-ion conductivity of the Al-doped Li7La3Zr2O12 solid electrolyte,” Ceramics International, vol. 48, no. 18, pp. 25689-25695, 2022.
There are 48 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Research Articles
Authors

Sevda Saran 0000-0002-2647-0700

Project Number 21406002
Early Pub Date April 15, 2025
Publication Date April 30, 2025
Submission Date November 24, 2024
Acceptance Date March 5, 2025
Published in Issue Year 2025 Volume: 29 Issue: 2

Cite

APA Saran, S. (2025). Structural Properties and Bandgap Energy of Ga-doped Garnet-type Li7La3Zr2O12 (LLZO) Solid Electrolyte Depending on Sintering Atmosphere. Sakarya University Journal of Science, 29(2), 160-170. https://doi.org/10.16984/saufenbilder.1590407
AMA Saran S. Structural Properties and Bandgap Energy of Ga-doped Garnet-type Li7La3Zr2O12 (LLZO) Solid Electrolyte Depending on Sintering Atmosphere. SAUJS. April 2025;29(2):160-170. doi:10.16984/saufenbilder.1590407
Chicago Saran, Sevda. “Structural Properties and Bandgap Energy of Ga-Doped Garnet-Type Li7La3Zr2O12 (LLZO) Solid Electrolyte Depending on Sintering Atmosphere”. Sakarya University Journal of Science 29, no. 2 (April 2025): 160-70. https://doi.org/10.16984/saufenbilder.1590407.
EndNote Saran S (April 1, 2025) Structural Properties and Bandgap Energy of Ga-doped Garnet-type Li7La3Zr2O12 (LLZO) Solid Electrolyte Depending on Sintering Atmosphere. Sakarya University Journal of Science 29 2 160–170.
IEEE S. Saran, “Structural Properties and Bandgap Energy of Ga-doped Garnet-type Li7La3Zr2O12 (LLZO) Solid Electrolyte Depending on Sintering Atmosphere”, SAUJS, vol. 29, no. 2, pp. 160–170, 2025, doi: 10.16984/saufenbilder.1590407.
ISNAD Saran, Sevda. “Structural Properties and Bandgap Energy of Ga-Doped Garnet-Type Li7La3Zr2O12 (LLZO) Solid Electrolyte Depending on Sintering Atmosphere”. Sakarya University Journal of Science 29/2 (April 2025), 160-170. https://doi.org/10.16984/saufenbilder.1590407.
JAMA Saran S. Structural Properties and Bandgap Energy of Ga-doped Garnet-type Li7La3Zr2O12 (LLZO) Solid Electrolyte Depending on Sintering Atmosphere. SAUJS. 2025;29:160–170.
MLA Saran, Sevda. “Structural Properties and Bandgap Energy of Ga-Doped Garnet-Type Li7La3Zr2O12 (LLZO) Solid Electrolyte Depending on Sintering Atmosphere”. Sakarya University Journal of Science, vol. 29, no. 2, 2025, pp. 160-7, doi:10.16984/saufenbilder.1590407.
Vancouver Saran S. Structural Properties and Bandgap Energy of Ga-doped Garnet-type Li7La3Zr2O12 (LLZO) Solid Electrolyte Depending on Sintering Atmosphere. SAUJS. 2025;29(2):160-7.


INDEXING & ABSTRACTING & ARCHIVING

33418 33537  30939     30940 30943 30941  30942  33255  33252  33253  33254

30944  30945  30946




30930Bu eser Creative Commons Atıf-Ticari Olmayan 4.0 Uluslararası Lisans   kapsamında lisanslanmıştır .