Research Article
BibTex RIS Cite

Lattice Boltzmann Modelling of Natural Convection Problems in a Cavity with a Different Wall Temperature

Year 2025, Volume: 29 Issue: 2, 151 - 159, 30.04.2025
https://doi.org/10.16984/saufenbilder.1615457

Abstract

In this study, the cyclic natural convection problem in a square enclosure is modeled using the Lattice Boltzmann Method (LBM) under laminar flow conditions. Four different combinations of boundary conditions are employed to create cases. These cases are denoted as HHHC (Horizontal Hot Horizontal Cold), HHVC (Horizontal Hot Vertical Cold), VHHC (Vertical Hot Horizontal Cold), and VHVC (Vertical Hot Vertical Cold). Four Rayleigh numbers have been utilized to represent laminar flow conditions, namely Ra=104, 105, 106, and 107. For validation purposes, the well-validated finite volume method-based commercial code Ansys-Fluent is employed. In the VHVC model and at the highest Rayleigh number, the results obtained with LBM were compared to and validated against the results obtained with the finite volume method. Nusselt numbers are compared for the four cases based on Rayleigh numbers, and the case with highest heat transfer identified. Cases of HHHC and VHVC have produced the lowest and highest Nusselt number, respectively.

References

  • G. De Vahl Davis, "Natural convection of air in a square cavity: A benchmark numerical solution," International Journal for Numerical Methods Fluids, vol. 3, pp. 249-264, May/June 1983.
  • S. Ostrach, "Natural convection in enclosure," ASME Journal of Heat and Mass Transfer, vol. 110, pp. 1175-1190, 1988.
  • J. L. Lage, A. Bejan, "The resonance of natural convection in an enclosure heated periodically from the side," International Journal of Heat and Mass Transfer, vol. 36, issue. 8, pp.2027-2038, 1993.
  • M. Mahdavi, M. Sharifpur, H. Ghodsinezhad, J. P. Meyer, "Experimental and numerical study of the thermal and hydrodynamic characteristics of laminar natural convective flow inside a rectangular cavity with water, ethylene glycol-water and air," Experimental Thermal and Fluid Science, vol. 78, pp.50-64, 2016.
  • N. Ugurbilek, Z. Sert, F. Selimefendigil, H. F. Oztop, "3D laminar natural convection in a cubical enclosure with gradually changing partitions," International Communications in Heat and Mass Transfer, vol. 133, 105932, 2022.
  • T. Pesso, S. Piva, "Laminar natural convection in a square cavity: Low Prandtl numbers and large density differences," International Journal of Heat and Mass Transfer, vol. 53, issue. 3-4, pp. 1036-1043, 2009.
  • M. Turkyilmazoglu, "Exponential nonuniform wall heating of a square cavity and natural convection," Chinese Journal of Physics, vol. 77, pp. 2122-2135, 2022.
  • M. Turkyilmazoglu, "Driven flow motion by a dually moving lid of a square cavity," European Journal of Mechanics / B Fluids, vol. 94, pp. 17-29, 2022.
  • Y. H. Qian, D. D’Humieres, P. Lalemand, "Lattice BGK models for Navier–Stokes equation," Europhysics Letters, vol. 17, issue.6, pp. 479-484, 1992.
  • S. Y. Chen, G. D. Doolen, "Lattice Boltzmann method for fluid flows," Annual Reviews Fluid Mechanics, vol. 30, pp. 329-364, 1998.
  • Y. H. Qian, S. Succi, S. A. Orszag, "Recent advance in lattice Boltzmann computing," Annual Reviews of Computational Physics III, pp. 195-242, 1995.
  • C. K. Aidun, "Lattice-Boltzmann method for complex flows," Annual Reviews of Fluid Mechanics, vol. 42, pp. 439-472, 2010.
  • L. Chen, Q. Kang, Y. Mu, Y. L. He, W. Q. Tao, "A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications," International Journal of Heat and Mass Transfer, vol. 76, 210236, 2014.
  • I. Taymaz, E. Aslan, A. C. Benim, "Numerical investigation of incompressible fluid flow and heat transfer across a bluff body in a channel flow," Thermal Science, vol. 19, issue. 2, pp. 537-547, 2015
  • P. Karki, A. K. Yadav, D. A. Perumal, "Lattice Boltzmann computation of two dimensional differentially heated cavity of incompressible fluid with different aspect ratios," in International Conference on Intelligent Computing, Instrumentation and Control Technologies-2017, Kannur, Kerala, 2017, pp. 1540-1550.
  • Y. Feng, S. Guo, W. Tao, P. Sagaut, "Regularized thermal lattice Boltzmann method for natural convection with large temperature differences," International Journal of Heat and Mass Transfer, vol. 125, pp. 1379-1391, 2018.
  • Y. Wei, H. Yang, H. S. Dou, Z. Lin, Z. Wang, Y. Qian, "A novel two-dimensional coupled lattice Boltzmann model for thermal incompressible flows," Applied Mathematics and Computation, vol. 339, pp. 556-567, 2018.
  • P. Pichandi, S. Anbalagan, "Natural convection heat transfer and fluid flow analysis in a 2D square enclosure with sinusoidal wave and different convection mechanism," International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29, issue. 9, pp. 2158-2188, 2018.
  • M. F. Hasan, M. M. Molla, S. Siddiqa, A. M. Khan, "Mesescopic CUDA 3D MRT-LBM simulaion of natural convection of poer-law fluids in a differentially heated cubic cavity with a machine learning cross-validation," Arabian Journal for Science and Engineering, vol. 49, pp 10687-10723, 2024.
  • T. Li, C. Zhu, Z. Gao, P. Lei, S. Liu, "GPU parallel compuing based on PF-LBM method for simulation dendrites growth under natural convection condition," AIP Advances vol. 14, issue. 2, 025240, 2024.
  • Ansys-Fluent, version 20.0, Canonsburf PA, Ansys-Inc, 2019
  • P. L. Bahatnagar, E. P. Gross, M. Krook, "A Model for Collisional Processes in Gases I: Small Amplitude Processes in Charged and Neutral One-Component System," Physical Review, vol. 94, issue. 3, pp. 511-525, 1954.
  • A. A. Mohamad, Lattice Boltzmann Fundamentals and Engineering Applications with Computer Codes. 2nd ed., London: Springer, 2019.

Farklı Duvar Sıcaklıklarına Sahip Bir Oyukta Doğal Taşınım Problemlerinin Lattice Boltzmann Modelleme Yöntemiyle İncelenme

Year 2025, Volume: 29 Issue: 2, 151 - 159, 30.04.2025
https://doi.org/10.16984/saufenbilder.1615457

Abstract

Bu çalışmada, bir kare kapalı alanda döngüsel doğal taşınım problemi, laminar akış koşulları altında Lattice Boltzmann metodu (LBM) kullanılarak modellenmiştir. Farklı durumları oluşturmak için dört farklı sınır koşulu kombinasyonu kullanılmıştır. Bu durumlar HHHC (Yatay Sıcak Yatay Soğuk), HHVC (Yatay Sıcak Dikey Soğuk), VHHC (Dikey Sıcak Yatay Soğuk) ve VHVC (Dikey Sıcak Dikey Soğuk) olarak adlandırılmıştır. Laminar akış koşullarını temsil etmek için dört farklı Rayleigh sayısı kullanılmıştır: Ra=10⁴, 10⁵, 10⁶ ve 10⁷. Doğrulama amacıyla, iyi doğrulanmış sonlu hacim metodu tabanlı ticari Ansys-Fluent kodu kullanılmıştır. VHVC modelinde ve en yüksek Rayleigh sayısında, LBM ile elde edilen sonuçlar, sonlu hacim metodu ile elde edilen sonuçlarla karşılaştırılmış ve doğrulanmıştır. Nusselt sayıları, Rayleigh sayıları bazında dört durum için karşılaştırılmış ve en yüksek ısı transferini sağlayan durum belirlenmiştir. HHHC ve VHVC durumları sırasıyla en düşük ve en yüksek Nusselt sayısını üretmiştir.

References

  • G. De Vahl Davis, "Natural convection of air in a square cavity: A benchmark numerical solution," International Journal for Numerical Methods Fluids, vol. 3, pp. 249-264, May/June 1983.
  • S. Ostrach, "Natural convection in enclosure," ASME Journal of Heat and Mass Transfer, vol. 110, pp. 1175-1190, 1988.
  • J. L. Lage, A. Bejan, "The resonance of natural convection in an enclosure heated periodically from the side," International Journal of Heat and Mass Transfer, vol. 36, issue. 8, pp.2027-2038, 1993.
  • M. Mahdavi, M. Sharifpur, H. Ghodsinezhad, J. P. Meyer, "Experimental and numerical study of the thermal and hydrodynamic characteristics of laminar natural convective flow inside a rectangular cavity with water, ethylene glycol-water and air," Experimental Thermal and Fluid Science, vol. 78, pp.50-64, 2016.
  • N. Ugurbilek, Z. Sert, F. Selimefendigil, H. F. Oztop, "3D laminar natural convection in a cubical enclosure with gradually changing partitions," International Communications in Heat and Mass Transfer, vol. 133, 105932, 2022.
  • T. Pesso, S. Piva, "Laminar natural convection in a square cavity: Low Prandtl numbers and large density differences," International Journal of Heat and Mass Transfer, vol. 53, issue. 3-4, pp. 1036-1043, 2009.
  • M. Turkyilmazoglu, "Exponential nonuniform wall heating of a square cavity and natural convection," Chinese Journal of Physics, vol. 77, pp. 2122-2135, 2022.
  • M. Turkyilmazoglu, "Driven flow motion by a dually moving lid of a square cavity," European Journal of Mechanics / B Fluids, vol. 94, pp. 17-29, 2022.
  • Y. H. Qian, D. D’Humieres, P. Lalemand, "Lattice BGK models for Navier–Stokes equation," Europhysics Letters, vol. 17, issue.6, pp. 479-484, 1992.
  • S. Y. Chen, G. D. Doolen, "Lattice Boltzmann method for fluid flows," Annual Reviews Fluid Mechanics, vol. 30, pp. 329-364, 1998.
  • Y. H. Qian, S. Succi, S. A. Orszag, "Recent advance in lattice Boltzmann computing," Annual Reviews of Computational Physics III, pp. 195-242, 1995.
  • C. K. Aidun, "Lattice-Boltzmann method for complex flows," Annual Reviews of Fluid Mechanics, vol. 42, pp. 439-472, 2010.
  • L. Chen, Q. Kang, Y. Mu, Y. L. He, W. Q. Tao, "A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications," International Journal of Heat and Mass Transfer, vol. 76, 210236, 2014.
  • I. Taymaz, E. Aslan, A. C. Benim, "Numerical investigation of incompressible fluid flow and heat transfer across a bluff body in a channel flow," Thermal Science, vol. 19, issue. 2, pp. 537-547, 2015
  • P. Karki, A. K. Yadav, D. A. Perumal, "Lattice Boltzmann computation of two dimensional differentially heated cavity of incompressible fluid with different aspect ratios," in International Conference on Intelligent Computing, Instrumentation and Control Technologies-2017, Kannur, Kerala, 2017, pp. 1540-1550.
  • Y. Feng, S. Guo, W. Tao, P. Sagaut, "Regularized thermal lattice Boltzmann method for natural convection with large temperature differences," International Journal of Heat and Mass Transfer, vol. 125, pp. 1379-1391, 2018.
  • Y. Wei, H. Yang, H. S. Dou, Z. Lin, Z. Wang, Y. Qian, "A novel two-dimensional coupled lattice Boltzmann model for thermal incompressible flows," Applied Mathematics and Computation, vol. 339, pp. 556-567, 2018.
  • P. Pichandi, S. Anbalagan, "Natural convection heat transfer and fluid flow analysis in a 2D square enclosure with sinusoidal wave and different convection mechanism," International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29, issue. 9, pp. 2158-2188, 2018.
  • M. F. Hasan, M. M. Molla, S. Siddiqa, A. M. Khan, "Mesescopic CUDA 3D MRT-LBM simulaion of natural convection of poer-law fluids in a differentially heated cubic cavity with a machine learning cross-validation," Arabian Journal for Science and Engineering, vol. 49, pp 10687-10723, 2024.
  • T. Li, C. Zhu, Z. Gao, P. Lei, S. Liu, "GPU parallel compuing based on PF-LBM method for simulation dendrites growth under natural convection condition," AIP Advances vol. 14, issue. 2, 025240, 2024.
  • Ansys-Fluent, version 20.0, Canonsburf PA, Ansys-Inc, 2019
  • P. L. Bahatnagar, E. P. Gross, M. Krook, "A Model for Collisional Processes in Gases I: Small Amplitude Processes in Charged and Neutral One-Component System," Physical Review, vol. 94, issue. 3, pp. 511-525, 1954.
  • A. A. Mohamad, Lattice Boltzmann Fundamentals and Engineering Applications with Computer Codes. 2nd ed., London: Springer, 2019.
There are 23 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Research Articles
Authors

Erman Aslan 0000-0001-8595-6092

Özlem Yalçın 0000-0001-9354-1671

Early Pub Date April 15, 2025
Publication Date April 30, 2025
Submission Date January 7, 2025
Acceptance Date March 5, 2025
Published in Issue Year 2025 Volume: 29 Issue: 2

Cite

APA Aslan, E., & Yalçın, Ö. (2025). Lattice Boltzmann Modelling of Natural Convection Problems in a Cavity with a Different Wall Temperature. Sakarya University Journal of Science, 29(2), 151-159. https://doi.org/10.16984/saufenbilder.1615457
AMA Aslan E, Yalçın Ö. Lattice Boltzmann Modelling of Natural Convection Problems in a Cavity with a Different Wall Temperature. SAUJS. April 2025;29(2):151-159. doi:10.16984/saufenbilder.1615457
Chicago Aslan, Erman, and Özlem Yalçın. “Lattice Boltzmann Modelling of Natural Convection Problems in a Cavity With a Different Wall Temperature”. Sakarya University Journal of Science 29, no. 2 (April 2025): 151-59. https://doi.org/10.16984/saufenbilder.1615457.
EndNote Aslan E, Yalçın Ö (April 1, 2025) Lattice Boltzmann Modelling of Natural Convection Problems in a Cavity with a Different Wall Temperature. Sakarya University Journal of Science 29 2 151–159.
IEEE E. Aslan and Ö. Yalçın, “Lattice Boltzmann Modelling of Natural Convection Problems in a Cavity with a Different Wall Temperature”, SAUJS, vol. 29, no. 2, pp. 151–159, 2025, doi: 10.16984/saufenbilder.1615457.
ISNAD Aslan, Erman - Yalçın, Özlem. “Lattice Boltzmann Modelling of Natural Convection Problems in a Cavity With a Different Wall Temperature”. Sakarya University Journal of Science 29/2 (April 2025), 151-159. https://doi.org/10.16984/saufenbilder.1615457.
JAMA Aslan E, Yalçın Ö. Lattice Boltzmann Modelling of Natural Convection Problems in a Cavity with a Different Wall Temperature. SAUJS. 2025;29:151–159.
MLA Aslan, Erman and Özlem Yalçın. “Lattice Boltzmann Modelling of Natural Convection Problems in a Cavity With a Different Wall Temperature”. Sakarya University Journal of Science, vol. 29, no. 2, 2025, pp. 151-9, doi:10.16984/saufenbilder.1615457.
Vancouver Aslan E, Yalçın Ö. Lattice Boltzmann Modelling of Natural Convection Problems in a Cavity with a Different Wall Temperature. SAUJS. 2025;29(2):151-9.


INDEXING & ABSTRACTING & ARCHIVING

33418 33537  30939     30940 30943 30941  30942  33255  33252  33253  33254

30944  30945  30946




30930Bu eser Creative Commons Atıf-Ticari Olmayan 4.0 Uluslararası Lisans   kapsamında lisanslanmıştır .