Research Article
BibTex RIS Cite

Dynamics and Expressions of Solutions of Nonlinear Difference Equations x_(n+1)=(x_(n-3) x_(n-6))/(±x_(n-2)±x_(n-2) x_(n-3) x_(n-6) )

Year 2025, Volume: 29 Issue: 4, 441 - 449, 31.08.2025
https://doi.org/10.16984/saufenbilder.1694462

Abstract

Nonlinear difference equations provide a framework for modeling natural phenomena in nonlinear sciences. In this paper, we investigate the periodicity, boundedness, oscillation, stability, and exact solutions of such equations. Employing the standard iteration method, we derive closed-form solutions and analyze the stability of equilibrium points using established theorems. Numerical simulations, implemented in Wolfram Mathematica, corroborate the theoretical findings. The proposed method can be readily extended to other rational recursive problems. This paper investigates the dynamical behavior of solutions to the rational difference equation
x_(n+1)=(x_(n-3) x_(n-6))/(±x_(n-2)±x_(n-2) x_(n-3) x_(n-6) )
where the initial conditions are arbitrary nonzero real numbers. We analyze the stability properties, periodic solutions, and long-term behavior of this equation, employing both analytical and numerical approaches to characterize its dynamics.

References

  • C. H. Gibbons, M. R. S. Kulenovic, G. Ladas, “On the recursive sequence (α+βx_(n-1))/(χ+βx_(n-1) ),” Mathematical Sciences Research Hot-line, vol. 4, pp. 1–11, 2000.
  • S. Elaydi, An Introduction to Difference Equations, 3rd ed., USA: Springer, 2005.
  • E. M. Elsayed, “On the difference equation x_(n+1)=x_(n-5)/(-1+x_(n-2) x_(n-5) ),” International Journal of Contemporary Mathematical Sciences, vol. 3, pp. 1657–1664, 2008.
  • R. P. Agarwal, E.M. Elsayed, “On the solution of fourth-order rational recursive sequence,” Advanced Studies in Contemporary Mathematics, vol. 20, pp. 525–545, 2010.
  • S. Stevic, B. Iricanin, Z. Smarda, “On a product-type system of difference equations of second order solvable in closed form,” Journal of Inequalities and Application, vol. 2015, pp. 327–334, 2012.
  • M. Aloqeili, “Dynamics of a rational difference equation,” Applied Mathematics and Computation, vol. 176, pp. 768–774, 2006.
  • R. Karatas, C. Cinar, D. Simsek, “On positive solutions of the difference equation x_(n+1)=x_(n-5)/(1+x_(n-2) x_(n-5) ),” International Journal of Contemporary Mathematical Sciences, vol. 10, pp. 495–500, 2006.
  • O. Karpenko, O. Stanzhytskyi, “The relation between the existence of bounded solutions of differential equations and the corresponding difference equations,” Journal of Difference Equations and Applications, vol. 19, pp. 1967–1982, 2013.
  • M. Bohner, O. Karpenko, O. Stanzhytskyi, “Oscillation of solutions of second-order linear differential equations and corresponding difference equations,” Journal of Difference Equations and Applications, vol. 20, pp. 1112–1126, 2014.
  • M. B. Almatrafi, M. M. Alzubaidi, “Analysis of the qualitative behaviour of an eighth-order fractional difference equation,” Open Journal of Discrete Applied Mathematics, vol. 2, pp. 41–47, 2019
  • A. Sanbo, E. M. Elsayed, “Some properties of the solutions of the difference equation x_(n+1)=αx_n+(bx_n x_(n-4))/(cx_(n-3)+dx_(n-4) ),” Open Journal of Discrete Applied Mathematics, vol. 2, pp. 31–47, 2019.
  • A. F. Yeniçerioğlu, C. Yazıcı, V. Yazıcı, “Stability behaviour in functional differential equations of the neutral type,” Universal Journal of Mathematics and Applications, vol. 4, pp. 33–40, 2021.
  • A. M. Ahmed, A. M. Samir, L. S. Aljoufi, “Expressions and dynamical behavior of solutions of a class of rational difference equations of fifteenth-order,” Journal of Mathematics and Computer Science, vol. 25, pp. 10–22, 2022.
  • M. Berkal, R. Abo-zeid, “On a rational (P+1)th order difference equation with quadratic term,” Universal Journal of Mathematics and Applications, vol. 5, pp. 136–144, 2022.
  • B. Oğul, D. Şimşek, T. F. Ibrahim, “A qualitative investigation of the solution of the difference equation Ψ_(m+1)=(Ψ_(m-3) Ψ_(m-5))/(Ψ_(m-1) (±1±Ψ_(m-3) Ψ_(m-5) ) ),” Communications in Advanced Mathematical Sciences, vol. 6, pp. 78–85, 2023.
  • B. Oğul, D. Şimşek, H. Öğünmez, A. S. Kurbanlı, “Dynamical behavior of rational difference equation x_(n+1)=x_(n-17)/(±1±x_(n-2) x_(n-5) x_(n-8) x_(n-11) x_(n-14) x_(n-17) ),” Boletín de la Sociedad Matemática Mexicana, vol. 27, pp. 1–20, 2021.
  • B. Oğul, D. Şimşek, “Dynamical analysis and solutions of nonlinear difference equations of thirty order,” Universal Journal of Mathematics and Applications, vol. 7, pp. 111–120, 2024.
  • B. Oğul, D. Şimşek, F. G. Abdullayev, “Dynamical behavior of the rational difference equation x_(n+1)=x_(n-13)/(±1±x_(n-1) x_(n-3) x_(n-5) x_(n-7) x_(n-9) x_(n-11) x_(n-13) ),” Ukrainian Mathematical Journal, vol. 76, pp. 1242–1260, 2024.
  • S. Stevic, “A note on periodic character of a higher order difference equation,” Rostocker Mathematisches Kolloquium, vol. 61, pp. 2–30, 2006.
  • V. L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Dordrecht: Kluwer Academic Publishers Group, 1993.
  • M. R. S. Kulenovic, G. Ladas, W.S. Sizer, “On the recursive sequence (αx_n+βx_(n-1))/(χx_n+βx_(n-1) ),” Mathematical Sciences Research Hot-line, vol. 2, pp. 1–16, 1998.
  • R. DeVault, G. Ladas, S.W. Schultz, “On the recursive sequence x_(n+1)=A/x_n +1/x_(n-2) ,” Proceedings of the American Mathematical Society, vol. 126, pp. 3257–3261, 1998.
  • A. M. Amleh, G. A. Grove, G. Ladas, D. A. Georgiou, “On the recursive sequence x_(n+1)=α+x_(n-1)/x_n ,” Journal of Mathematical Analysis and Applications, vol. 233, pp. 790–798, 1999.

Year 2025, Volume: 29 Issue: 4, 441 - 449, 31.08.2025
https://doi.org/10.16984/saufenbilder.1694462

Abstract

References

  • C. H. Gibbons, M. R. S. Kulenovic, G. Ladas, “On the recursive sequence (α+βx_(n-1))/(χ+βx_(n-1) ),” Mathematical Sciences Research Hot-line, vol. 4, pp. 1–11, 2000.
  • S. Elaydi, An Introduction to Difference Equations, 3rd ed., USA: Springer, 2005.
  • E. M. Elsayed, “On the difference equation x_(n+1)=x_(n-5)/(-1+x_(n-2) x_(n-5) ),” International Journal of Contemporary Mathematical Sciences, vol. 3, pp. 1657–1664, 2008.
  • R. P. Agarwal, E.M. Elsayed, “On the solution of fourth-order rational recursive sequence,” Advanced Studies in Contemporary Mathematics, vol. 20, pp. 525–545, 2010.
  • S. Stevic, B. Iricanin, Z. Smarda, “On a product-type system of difference equations of second order solvable in closed form,” Journal of Inequalities and Application, vol. 2015, pp. 327–334, 2012.
  • M. Aloqeili, “Dynamics of a rational difference equation,” Applied Mathematics and Computation, vol. 176, pp. 768–774, 2006.
  • R. Karatas, C. Cinar, D. Simsek, “On positive solutions of the difference equation x_(n+1)=x_(n-5)/(1+x_(n-2) x_(n-5) ),” International Journal of Contemporary Mathematical Sciences, vol. 10, pp. 495–500, 2006.
  • O. Karpenko, O. Stanzhytskyi, “The relation between the existence of bounded solutions of differential equations and the corresponding difference equations,” Journal of Difference Equations and Applications, vol. 19, pp. 1967–1982, 2013.
  • M. Bohner, O. Karpenko, O. Stanzhytskyi, “Oscillation of solutions of second-order linear differential equations and corresponding difference equations,” Journal of Difference Equations and Applications, vol. 20, pp. 1112–1126, 2014.
  • M. B. Almatrafi, M. M. Alzubaidi, “Analysis of the qualitative behaviour of an eighth-order fractional difference equation,” Open Journal of Discrete Applied Mathematics, vol. 2, pp. 41–47, 2019
  • A. Sanbo, E. M. Elsayed, “Some properties of the solutions of the difference equation x_(n+1)=αx_n+(bx_n x_(n-4))/(cx_(n-3)+dx_(n-4) ),” Open Journal of Discrete Applied Mathematics, vol. 2, pp. 31–47, 2019.
  • A. F. Yeniçerioğlu, C. Yazıcı, V. Yazıcı, “Stability behaviour in functional differential equations of the neutral type,” Universal Journal of Mathematics and Applications, vol. 4, pp. 33–40, 2021.
  • A. M. Ahmed, A. M. Samir, L. S. Aljoufi, “Expressions and dynamical behavior of solutions of a class of rational difference equations of fifteenth-order,” Journal of Mathematics and Computer Science, vol. 25, pp. 10–22, 2022.
  • M. Berkal, R. Abo-zeid, “On a rational (P+1)th order difference equation with quadratic term,” Universal Journal of Mathematics and Applications, vol. 5, pp. 136–144, 2022.
  • B. Oğul, D. Şimşek, T. F. Ibrahim, “A qualitative investigation of the solution of the difference equation Ψ_(m+1)=(Ψ_(m-3) Ψ_(m-5))/(Ψ_(m-1) (±1±Ψ_(m-3) Ψ_(m-5) ) ),” Communications in Advanced Mathematical Sciences, vol. 6, pp. 78–85, 2023.
  • B. Oğul, D. Şimşek, H. Öğünmez, A. S. Kurbanlı, “Dynamical behavior of rational difference equation x_(n+1)=x_(n-17)/(±1±x_(n-2) x_(n-5) x_(n-8) x_(n-11) x_(n-14) x_(n-17) ),” Boletín de la Sociedad Matemática Mexicana, vol. 27, pp. 1–20, 2021.
  • B. Oğul, D. Şimşek, “Dynamical analysis and solutions of nonlinear difference equations of thirty order,” Universal Journal of Mathematics and Applications, vol. 7, pp. 111–120, 2024.
  • B. Oğul, D. Şimşek, F. G. Abdullayev, “Dynamical behavior of the rational difference equation x_(n+1)=x_(n-13)/(±1±x_(n-1) x_(n-3) x_(n-5) x_(n-7) x_(n-9) x_(n-11) x_(n-13) ),” Ukrainian Mathematical Journal, vol. 76, pp. 1242–1260, 2024.
  • S. Stevic, “A note on periodic character of a higher order difference equation,” Rostocker Mathematisches Kolloquium, vol. 61, pp. 2–30, 2006.
  • V. L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Dordrecht: Kluwer Academic Publishers Group, 1993.
  • M. R. S. Kulenovic, G. Ladas, W.S. Sizer, “On the recursive sequence (αx_n+βx_(n-1))/(χx_n+βx_(n-1) ),” Mathematical Sciences Research Hot-line, vol. 2, pp. 1–16, 1998.
  • R. DeVault, G. Ladas, S.W. Schultz, “On the recursive sequence x_(n+1)=A/x_n +1/x_(n-2) ,” Proceedings of the American Mathematical Society, vol. 126, pp. 3257–3261, 1998.
  • A. M. Amleh, G. A. Grove, G. Ladas, D. A. Georgiou, “On the recursive sequence x_(n+1)=α+x_(n-1)/x_n ,” Journal of Mathematical Analysis and Applications, vol. 233, pp. 790–798, 1999.
There are 23 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Research Articles
Authors

Burak Oğul 0000-0002-3264-4340

Dağıstan Şimşek 0000-0003-3003-807X

Early Pub Date August 27, 2025
Publication Date August 31, 2025
Submission Date May 7, 2025
Acceptance Date August 6, 2025
Published in Issue Year 2025 Volume: 29 Issue: 4

Cite

APA Oğul, B., & Şimşek, D. (2025). Dynamics and Expressions of Solutions of Nonlinear Difference Equations x_(n+1)=(x_(n-3) x_(n-6))/(±x_(n-2)±x_(n-2) x_(n-3) x_(n-6) ). Sakarya University Journal of Science, 29(4), 441-449. https://doi.org/10.16984/saufenbilder.1694462
AMA Oğul B, Şimşek D. Dynamics and Expressions of Solutions of Nonlinear Difference Equations x_(n+1)=(x_(n-3) x_(n-6))/(±x_(n-2)±x_(n-2) x_(n-3) x_(n-6) ). SAUJS. August 2025;29(4):441-449. doi:10.16984/saufenbilder.1694462
Chicago Oğul, Burak, and Dağıstan Şimşek. “Dynamics and Expressions of Solutions of Nonlinear Difference Equations X_(n+1)=(x_(n-3) X_(n-6)) (±x_(n-2)±x_(n-2) X_(n-3) X_(n-6) )”. Sakarya University Journal of Science 29, no. 4 (August 2025): 441-49. https://doi.org/10.16984/saufenbilder.1694462.
EndNote Oğul B, Şimşek D (August 1, 2025) Dynamics and Expressions of Solutions of Nonlinear Difference Equations x_(n+1)=(x_(n-3) x_(n-6) /(±x_(n-2)±x_(n-2) x_(n-3) x_(n-6) ). Sakarya University Journal of Science 29 4 441–449.
IEEE B. Oğul and D. Şimşek, “Dynamics and Expressions of Solutions of Nonlinear Difference Equations x_(n+1)=(x_(n-3) x_(n-6))/(±x_(n-2)±x_(n-2) x_(n-3) x_(n-6) )”, SAUJS, vol. 29, no. 4, pp. 441–449, 2025, doi: 10.16984/saufenbilder.1694462.
ISNAD Oğul, Burak - Şimşek, Dağıstan. “Dynamics and Expressions of Solutions of Nonlinear Difference Equations X_(n+1)=(x_(n-3) X_(n-6)) (±x_(n-2)±x_(n-2) X_(n-3) X_(n-6) )”. Sakarya University Journal of Science 29/4 (August2025), 441-449. https://doi.org/10.16984/saufenbilder.1694462.
JAMA Oğul B, Şimşek D. Dynamics and Expressions of Solutions of Nonlinear Difference Equations x_(n+1)=(x_(n-3) x_(n-6))/(±x_(n-2)±x_(n-2) x_(n-3) x_(n-6) ). SAUJS. 2025;29:441–449.
MLA Oğul, Burak and Dağıstan Şimşek. “Dynamics and Expressions of Solutions of Nonlinear Difference Equations X_(n+1)=(x_(n-3) X_(n-6)) (±x_(n-2)±x_(n-2) X_(n-3) X_(n-6) )”. Sakarya University Journal of Science, vol. 29, no. 4, 2025, pp. 441-9, doi:10.16984/saufenbilder.1694462.
Vancouver Oğul B, Şimşek D. Dynamics and Expressions of Solutions of Nonlinear Difference Equations x_(n+1)=(x_(n-3) x_(n-6))/(±x_(n-2)±x_(n-2) x_(n-3) x_(n-6) ). SAUJS. 2025;29(4):441-9.


INDEXING & ABSTRACTING & ARCHIVING

33418 33537  30939     30940 30943 30941  30942  33255    33253  33254

30944  30945  30946   34239




30930Bu eser Creative Commons Atıf-Ticari Olmayan 4.0 Uluslararası Lisans   kapsamında lisanslanmıştır .