Research Article
BibTex RIS Cite

Evaluation of Thermal Transfer Efficiency and Nonlinear Shear Effects on Flow Modulation in a Flexible Microfluidic Heat Transfer System

Year 2025, Volume: 29 Issue: 4, 402 - 425, 31.08.2025
https://doi.org/10.16984/saufenbilder.1713546

Abstract

This study examines the thermal transfer performance of a microfluidic heat transfer system, with a focus on the interplay between flow orientation, flexibility, and nonlinear shear dilution/enhancement effects. A mathematical model was developed to describe the heat transfer dynamics within a flexible microchannel subjected to Robin boundary conditions, accounting for complex flow behaviors. The governing partial differential equations (PDEs) were transformed into a system of coupled ordinary differential equations (ODEs) using appropriate similarity quantities, the fourth-order Runge-Kutta-Fehlberg method, and shooting techniques to facilitate efficient computation of thermal, mass, and flow distributions. Subsequently, Maplesoft 16 was used to simulate the resulting system of equations. The analysis explores how flow orientation influences shear-induced dilution or enhancement, impacting effective thermal conductivity and heat transfer efficiency. The flexibility of the microchannel walls introduces nonlinear effects, modulating the flow profile and heat dissipation rates. Results indicate that optimal flow orientation and controlled flexibility significantly enhance thermal performance, with nonlinear shear effects amplifying or mitigating heat transfer depending on the flow regime. These findings provide valuable insights for designing advanced microfluidic systems for applications requiring precise thermal management, such as microelectronics cooling and lab-on-chip devices. Additionally, the Nusselt number decreases as the Prandtl number increases, while the Sherwood number rises due to an enhanced Schmidt number.

References

  • J. C. Maxwell, “A Treatise on Electricity and Magnetism,” 3rd Edition, Clarendon Press, Oxford, UK, 1891.
  • R. L. Hamilton, O. K. Crosser, “Thermal conductivity of heterogeneous two-component systems,” Industrial and Engineering Chemistry Fundamentals, vol.1, pp. 187–191, 1962.
  • C. Kleinstreuer, Y. Feng, “Experimental and theoretical studies of nanofluid thermal conductivity enhancement: A review,” Nanoscale Research Letters, vol. 6, no. 1, pp. 229, 2011.
  • S. Ozerinc, S. Kakac, A. Guvenc, Y. Yazicioglu, “Enhanced thermal conductivity of nanofluids: A state-of-the-art review,” Microfluidics and Nanofluidics, vol. 8, pp. 145–170, 2010.
  • J. Fan, L. Wang, “Review of heat conduction in nanofluids,” American Society of Mechanical Engineers’ Journal of Heat Transfer, vol. 133, 040801, pp. 1–14, 2011.
  • S. M. S. Murshed, K. C. Leong, C. Yang, “Thermophysical and electrokinetic properties of nanofluids: A critical review,” Applied Thermal Engineering, vol. 28, pp. 2109–2125, 2008.
  • E. V. Timofeeva, W. Yu, D. M. France, D. Singh, J. L. Routbort, “Nanofluids for heat transfer: An engineering approach,” Nanoscale Research Letters, vol. 6, no. 1, pp. 182, 2011.
  • S. K. Das, S. U. S. Choi, W. Yu, T. Pradeep, “Nanofluids: Science and Technology,” John Wiley & Sons, Inc., Publication, New Jersey, USA, 2008.
  • D. Li, “Encyclopedia of Microfluidics and Nanofluidics,” Springer, Amsterdam, Berlin, 2008.
  • C. S. Kumar, “Microfluidic Devices in Nanotechnology: Applications,” John Wiley & Sons, Inc., Publication, Hoboken, New Jersey, 2010.
  • B. C. Pak, Y. I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles,” Experimental Heat Transfer, vol. 11, no. 2, pp. 151-170, 1998.
  • Y. Xuan, W. Roetzel, “Conceptions for heat transfer correlation of nanofluids,” International Journal of Heat and Mass Transfer, vol. 43, pp. 3701–3707, 2000.
  • D. Wen, Y. Ding, “Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions,” International Journal of Heat Mass Transfer, vol. 47, pp. 5181–5188, 2004.
  • S. Z. Heris, M. N. Esfahany, G. Etemad, “Investigation of CuO/water nanofluid laminar convective heat transfer through a circular tube,” Journal of Enhanced Heat Transfer, vol. 13, pp. 279–289, 2006.
  • S. Z. Heris, M. N. Esfahany, S. Gh. Etemad, “Experimental investigation of convective heat transfer of Al_2 O_3/water nanofluid in circular tube,” International Journal of Heat Fluid Flow, vol. 28, pp. 203–210, 2007.
  • J. Buongiorno, “Convective transport in nanofluids,” American Society of Mechanical Engineers’ Journal of Heat Transfer, vol. 128, pp. 240–250, 2006.
  • J. Y. Jung, H. S. Oh, H. Y. Kwak, “Forced convective heat transfer of nanofluids in microchannels,” International Journal of Heat and Mass Transfer, vol. 52, pp. 466–472, 2009.
  • U. Rea, T. McKrell, L. Hu, J. Buongiorno, “Laminar convective heat transfer and viscous pressure loss of alumina-water and zirconia-water nanofluids,” International Journal of Heat and Mass Transfer, vol. 52, pp. 2042–2048, 2009.
  • P. S. Vajjha, D. K. Das, D. P. Kulkarni, “Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids,” International Journal of Heat and Mass Transfer, vol. 53, pp. 4607–4618, 2010.
  • R. H. Khiabani, Y. Joshi, C. K. Aidun, “Heat transfer in microchannels with suspended solid particles: Lattice-Boltzmann based computations,” American Society of Mechanical Engineers’ Journal of Heat Transfer, vol. 132, 041003, pp. 1–9, 2010.
  • M. Hojjat, S. Gh. Etemad, R. Bagheri, J. Thibault, “Convective heat transfer of non-Newtonian nanofluids through a uniformly heated circular tube,” International Journal of Thermal Science, vol. 50, pp. 525–531, 2011.
  • M. H. Fard, M. N. Esfahany, M. R. Talaie, “Numerical study of convective heat transfer of nanofluids in a circular tube two-phase model versus single-phase model,” International Communications in Heat and Mass Transfer, vol. 37, pp. 91–97, 2009.
  • R. Lotfi, Y. Saboohi, A. M. Rashidi, “Numerical study of forced convective Heat transfer for nanofluids: Comparison of different approaches,” International Communications in Heat and Mass Transfer, vol. 37, pp. 74–78, 2010.
  • M. M. Heyhat, F. Kowsary, “Effect of particle migration on flow and convective heat transfer of nanofluids flowing through a circular pipe,” American Society of Mechanical Engineers’ Journal of Heat Transfer, vol. 132, 062401, pp. 1-9, 2010.
  • A. Akbarinia, M. Abdolzadeh, R. Laur, “Critical investigation of heat transfer enhancement using nanofluids in microchannels with slip and non-slip flow regimes,” Applied Thermal Engineering, vol. 31, pp. 556–565, 2011.
  • S. Kondaraju, E. K. Jin, J. S. Lee, “Effect of the multi-sized nanoparticle distribution on the thermal conductivity of nanofluids,” Microfluidics and Nanofluidics, vol. 10, pp. 133–144, 2011.
  • J. H. Werth, M. Linsenmayer, S. M. Dammer, Z. Farkas, H. Hinichsen, K. E. Wirth, D.E. Wolf, “Agglomeration of charged nanopowders in suspensions,” Powder Technology, vol. 133, pp. 106–112, 2011.
  • W. Jiang, G. Ding, H. Peng, H. Hu, “Modeling of nanoparticles aggregation and sedimentation in nanofluid,” Current Applied Physics, vol. 10, pp. 934–941, 2011.
  • W. Evans, R. Prasher, J. Fish, P. Meakin, P. Phelan, P. Keblinski, “Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids,” International Journal of Heat and Mass Transfer, vol. 51, pp. 1431–1438, 2008.
  • J. Li, C. Kleinstreuer, “Entropy generation analysis for nanofluid flow in microchannels,” American Society of Mechanical Engineers’ Journal of Heat Transfer, vol. 132, 122401, pp. 1-8, 2010.
  • P. K. Singh, K. B. Anoop, T. Sundararajan, S. K. Das, “Entropy generation due to flow and heat transfer in nanofluids,” International Journal of Heat and Mass Transfer, vol. 53, pp. 4757–4767, 2010.
  • M. Kalteh, A. Abbassi, M. Saffar-Avval, J. Harting, “Eulerian-Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel,” International Journal of Heat and Fluid Flow, vol. 32, pp. 107–116, 2011.
  • A. J. Omowaye, A. I. Fagbade, A. O. Ajayi, “Dufour and Soret effects on steady MHD convective flow of a fluid in a porous medium with temperature-dependent viscosity: Homotopy analysis approach,” Journal of the Nigerian Mathematical Society, 2015.
  • R. C. Fernando, E. G. Hernandez-Martinez, R. D. J. Portillo-Velez, L. Rejón-García, “Nanotechnology Applications in Ground Heat Exchanger Pipes: A Review,” Applied. Sciences, vol. 12, 3794, 2022.
  • B. Wang, Y. Liu, L. Ling, “Nanofluid double diffusive natural convection in a porous cavity under multiple force fields,” Numerical Heat Transfer, Part A: Applications, 2019.
  • M. K. Virginia, T. T. M. Onyango, J. K. Kwanza, “Analysis of the Effect of Stretching Parameter and Time Parameter on MHD Nanofluid Flow in the Presence of Suction,” Global Journal of Pure and Applied Mathematics, vol. 15, no. 5, pp. 637-648. 2019.
  • N. K. Muhammad, F. M. Aldosari, Z. Wang, M. Yasir, M. Afikuzzamand, I. E. Elseesy, “Overview of solar thermal applications of heat exchangers with thermophysical features of hybrid nanomaterials,” Nanoscale Advances., vol. 6, pp. 136-145, 2024.
  • P. B. Reddy, “Radiation and chemical reaction effects on unsteady MHD free convection parabolic flow past an infinite isothermal vertical plate with viscous dissipation,” International Journal of Applied Mechanics and Engineering, vol. 24, no. 2, pp. 343-358, 2019.
  • Y. Menni, A. J. Chamkha, H. Ameur, “Advances of nanofluids in heat Exchangers: A review,” Heat Transfer, pp. 1–29, 2020.
  • H. A. Peker, F. A. Cuha, “Solving One-Dimensional Bratu's Problem via Kashuri Fundo Decomposition Method,” Romanian Journal of Physics, vol. 68, no. 5-6, pp. 109, 2023.
  • H. A. Peker, F. A. Cuha, “Application of Kashuri Fundo Transform and Homotopy Perturbation Methods to Fractional Heat Transfer and Porous Media Equations,” Thermal Science, vol. 26, no. .(4A), pp. 2877-2884, 2022.
  • B. Peker, F. A. Cuha, H. A. Peker, “Analytical solution of Newton's Law of cooling equation via Kashuri Fundo transform,” Necmettin Erbakan University Journal of Science and Engineering, vol. 6, no. 1, 2024.
  • H. A. Peker, F. A. Cuha, B. Peker, “Solving steady heat transfer problems via Kashuri Fundo transform,” Thermal Science, vol. 26, no. 4A, pp. 3011-3017, 2022. Doi:10.2298/TSCI2204011P.
  • F. A. Cuha, H. A. Peker, “Solution of Abel's Integral Equation by Kashuri Fundo Transform,” Thermal Science, vol. 26, no. 4A, pp. 3003-3010, 2022.
  • J. Boussinesq, “Analytical Theory of Heat,” Gauthier-Villars. Paris, 1877.
  • A. K. A. Hakeem, G. Bhose, M. Y. A. Sait, V. G. Nagaraj, M. R. Muhammad, “Nonlinear Studies on the effect of non-uniform Heat Generation/Absorption on Hydromagnetic Flow of Nanofluid over a Vertical Plate,” Journal of Nonlinear Analysis, Modelling, and Control, vol. 22, no. 1, pp. 1-16, 2017.
  • L. V. Woodcock, “Origins of shear dilatancy and shear thickening phenomena,” Chemical Physics Letters, vol. 111, no. 4–5, pp. 455–461, 1984. Bibcode:1984CPL.111.455W.
  • P. A. Davidson, “Magnetic damping of ets and vortices,” Journal of Fluid Mechanics, vol. 299, pp. 153-186, 1995.
  • J. A. Shercliff, “The flow of conducting fluids in circular pipes under transverse magnetic fields,” Journal of Fluid Mechanics, vol. 1, pp. 644-666, 1956.
  • R. J. Rosa, “MHD energy conversion,” Institute of Electrical and Electronics Engineers Transactions on Power Apparatus and Systems, vol. 87, no. 8, pp. 1713-1722, 1968. McGraw-Hill.
  • P. Johannes, D. G. Kröger, “Solar chimney power plant performance,” Journal of Solar Energy Engineering, vol. 128, no. 3, pp. 302-311, 2006.
  • A. R. A. Khaled, K. Vafai, “The role of porous media modeling flow and heat transfer in biological tissues,” International Journal of Heat and Mass Transfer, vol. 46, pp. 4989-5003, 2003.
  • P. Singh, A. K. Pandey, M. Kumar, “Forced convection in MHD slip flow of alumina-water nanofluid over a flat plate,” Journal of Enhanced Heat Transfer, vol. 23, no. 6, pp. 487–497, 2016.
  • U. U. Awucha, A. Okechukwu, “A soret dissipation effect on heat and mass transmission of non-Newtonian casson radiative nanofluid flow with Lorentz drag and Rosseland radiation,” Journal of Pure and Applied Sciences, vol. 21, no. 2, pp. 120-127, 2022.
  • A. U. Uchenna, E. Esekhaigbe, O. B. Inalu, “Analysis of boundary layer thickness and temperature distribution in a fluidic stream across a stretching sheet with thermal nonequilibrium and viscous heating effects," ElCezeri Journal of Science and Engineering, vol. 12, no. 2, pp. 134-152, 2025.
  • A. Abbas, M. A. Shahid, A. Ilyas, M. B. Jeelan, “Effect of inclined magnetic field and thermal radiation on Williamson nanofluid flow and heat transfer along the stretching/shrinking wedge,” Journal of Nanofluids, vol. 12, pp. 2237-2244, 2023.
There are 56 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other), Mechanical Engineering (Other)
Journal Section Research Articles
Authors

Uchenna Uka 0000-0003-4177-3213

Edwin Esekhaigbe 0009-0007-5337-0856

Joseph Onyeka Emegha 0000-0001-6392-8867

Godswill Kalu 0009-0005-1756-5731

Early Pub Date August 11, 2025
Publication Date August 31, 2025
Submission Date June 4, 2025
Acceptance Date July 31, 2025
Published in Issue Year 2025 Volume: 29 Issue: 4

Cite

APA Uka, U., Esekhaigbe, E., Emegha, J. O., Kalu, G. (2025). Evaluation of Thermal Transfer Efficiency and Nonlinear Shear Effects on Flow Modulation in a Flexible Microfluidic Heat Transfer System. Sakarya University Journal of Science, 29(4), 402-425. https://doi.org/10.16984/saufenbilder.1713546
AMA Uka U, Esekhaigbe E, Emegha JO, Kalu G. Evaluation of Thermal Transfer Efficiency and Nonlinear Shear Effects on Flow Modulation in a Flexible Microfluidic Heat Transfer System. SAUJS. August 2025;29(4):402-425. doi:10.16984/saufenbilder.1713546
Chicago Uka, Uchenna, Edwin Esekhaigbe, Joseph Onyeka Emegha, and Godswill Kalu. “Evaluation of Thermal Transfer Efficiency and Nonlinear Shear Effects on Flow Modulation in a Flexible Microfluidic Heat Transfer System”. Sakarya University Journal of Science 29, no. 4 (August 2025): 402-25. https://doi.org/10.16984/saufenbilder.1713546.
EndNote Uka U, Esekhaigbe E, Emegha JO, Kalu G (August 1, 2025) Evaluation of Thermal Transfer Efficiency and Nonlinear Shear Effects on Flow Modulation in a Flexible Microfluidic Heat Transfer System. Sakarya University Journal of Science 29 4 402–425.
IEEE U. Uka, E. Esekhaigbe, J. O. Emegha, and G. Kalu, “Evaluation of Thermal Transfer Efficiency and Nonlinear Shear Effects on Flow Modulation in a Flexible Microfluidic Heat Transfer System”, SAUJS, vol. 29, no. 4, pp. 402–425, 2025, doi: 10.16984/saufenbilder.1713546.
ISNAD Uka, Uchenna et al. “Evaluation of Thermal Transfer Efficiency and Nonlinear Shear Effects on Flow Modulation in a Flexible Microfluidic Heat Transfer System”. Sakarya University Journal of Science 29/4 (August2025), 402-425. https://doi.org/10.16984/saufenbilder.1713546.
JAMA Uka U, Esekhaigbe E, Emegha JO, Kalu G. Evaluation of Thermal Transfer Efficiency and Nonlinear Shear Effects on Flow Modulation in a Flexible Microfluidic Heat Transfer System. SAUJS. 2025;29:402–425.
MLA Uka, Uchenna et al. “Evaluation of Thermal Transfer Efficiency and Nonlinear Shear Effects on Flow Modulation in a Flexible Microfluidic Heat Transfer System”. Sakarya University Journal of Science, vol. 29, no. 4, 2025, pp. 402-25, doi:10.16984/saufenbilder.1713546.
Vancouver Uka U, Esekhaigbe E, Emegha JO, Kalu G. Evaluation of Thermal Transfer Efficiency and Nonlinear Shear Effects on Flow Modulation in a Flexible Microfluidic Heat Transfer System. SAUJS. 2025;29(4):402-25.


INDEXING & ABSTRACTING & ARCHIVING

33418 33537  30939     30940 30943 30941  30942  33255    33253  33254

30944  30945  30946   34239




30930Bu eser Creative Commons Atıf-Ticari Olmayan 4.0 Uluslararası Lisans   kapsamında lisanslanmıştır .