Research Article
BibTex RIS Cite

The Comparison of Reconstruction Algorithms for Diffuse Optical Tomography

Year 2019, , 285 - 295, 30.11.2019
https://doi.org/10.29233/sdufeffd.549528

Abstract

Diffuse optical tomography (DOT) utilizes wavelength range of 750-950 nm to map the spatial distribution of the tissue chromophores of breast tissue for cancer diagnosis or follow up prognosis. DOT allows tomographic reconstructions of tissue optical properties. Several reconstruction methods have been developed to minimize artifacts and obtain more realistic tomographic images. In order to compare four different reconstruction algorithms, data acquired from tissue phantoms using a DOT system.  Algebraic reconstruction technique (ART), simultaneous iteration reconstruction technique (SIRT), truncated singular value decomposition (TSVD) and truncated conjugate gradient (TCG) techniques have been compared in terms of location of inclusion in the tissue phantoms. It has been shown that images reconstructed by the subspace techniques, TSVD and TCG locating the inclusion position better than the algebraic methods ART and SIRT. Beside, images reconstructed by TSVD and TCG have less artifact when compared to images of ART and SIRT. 

References

  • [1] A. Yodh and B. Chance, "Spectroscopy and imaging with diffusing light," Physics Today, 48, 34-40, 1995.
  • [2] H. B. Jiang, N. V. Iftimia, Y. Xu, J. A. Eggert, L. L. Fajardo, and K. L. Klove, "Near-infrared optical imaging of the breast with model-based reconstruction," Academic Radiology, 9, 186-194, 2002.
  • [3] Z. Yuan, Q. Z. Zhang, E. S. Sobel, and H. B. Jiang, "Image-guided optical spectroscopy in diagnosis of osteoarthritis: a clinical study," Biomedical Optics Express, 1, 74-86, 2010.
  • [4] Z. Yuan, "Combining independent component analysis and Granger causality to investigate brain network dynamics with fNIRS measurements," Biomedical Optics Express, 4, 2629-2643, 2013.
  • [5] R. C. Mesquita, M. A. Franceschini, and D. A. Boas, "Resting state functional connectivity of the whole head with near-infrared spectroscopy," Biomedical Optics Express, 1, 324-336, 2010.
  • [6] D. Lighter, J. Hughes, I. Styles, A. Filer, and H. Dehghani, "Multispectral, non-contact diffuse optical tomography of healthy human finger joints," Biomedical Optics Express, 9, 1445-1460, 2018.
  • [7] V. Ntziachristos, "Fluorescence molecular imaging," Annual Review of Biomedical Engineering, 8, 1-33, 2006.
  • [8] L. Wang, S. L. Jacques, and L. Zheng, "MCML—Monte Carlo modeling of light transport in multi-layered tissues," Computer Methods and Programs in Biomedicine, 47, 131-146, 1995.
  • [9] B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O'Sullivan, A. E. Cerussi, P. M. Carpenter, et al., "Predicting Responses to Neoadjuvant Chemotherapy in Breast Cancer: ACRIN 6691 Trial of Diffuse Optical Spectroscopic Imaging," Cancer Research, 76, 5933-5944, 2016.
  • [10] T. Shimokawa, T. Ishii, Y. Takahashi, S. Sugawara, M.-a. Sato, and O. Yamashita, "Diffuse optical tomography using multi-directional sources and detectors," Biomedical Optics Express, 7, 2623-2640, 2016.
  • [11] S. R. Arridge and M. Schweiger, "A gradient-based optimisation scheme for optical tomography," Optics Express, 2, 213-226, 1998.
  • [12] S. R. Arridge and M. Schweiger, "Image reconstruction in optical tomography," Philosophical Transactions of the Royal Society of London B: Biological Sciences, 352, 717-726, 1997.
  • [13] C. L. Matson, N. Clark, L. McMackin, and J. S. Fender, "Three-dimensional tumor localization in thick tissue with the use of diffuse photon-density waves," Applied Optics, 36, 214-220, 1997.
  • [14] S. B. Colak, D. G. Papaioannou, G. W. tHooft, M. B. vanderMark, H. Schomberg, J. C. J. Paasschens, et al., "Tomographic image reconstruction from optical projections in light-diffusing media," Applied Optics, 36, 180-213, 1997.
  • [15] T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, "Diffuse optics for tissue monitoring and tomography," Reports on Progress in Physics, 73, 2010.
  • [16] R. Endoh, A. Suzuki, M. Fujii, and K. Nakayama, "Fundamental study on diffuse reflective optical tomography," Physics in Medicine and Biology, 49, 1881, 2004.
  • [17] A. C. Kak and M. Slaney, Principles of computerized tomographic imaging: SIAM, 2001.
  • [18] S. L. Jacques and L. Wang, "Monte Carlo modeling of light transport in tissues," in Optical-Thermal response of laser-irradiated tissue, ed: Springer, 1995, pp. 73-100.
  • [19] D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, "Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head," Optics Express, 10, 159-170, 2002.
  • [20] R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, et al., "A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient," Physics in Medicine & Biology, 45, 1051, 2000.
  • [21] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical recipes in C: the art of scientific computing: Cambridge University Press, 1988.
  • [22] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: SIAM, 1998.
  • [23] O. Alter, P. O. Brown, and D. Botstein, "Singular value decomposition for genome-wide expression data processing and modeling," Proceedings of the National Academy of Sciences of the United States of America, 97, 10101-10106, 2000.
  • [24] H. O. Kazanci, T. Mercan, and M. Canpolat, "Design and evaluation of a reflectance diffuse optical tomography system," Optical and Quantum Electronics, 47, 257-265, 2015.
  • [25] T. J. Farrell, M. S. Patterson, and B. Wilson, "A Diffusion-Theory Model of Spatially Resolved, Steady-State Diffuse Reflectance for the Noninvasive Determination of Tissue Optical-Properties Invivo," Medical Physics, 19, 879-888, 1992.
  • [26] S. R. Arridge, "Optical tomography in medical imaging," Inverse Problems, 15, R41-R93, 1999.
  • [27] R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, et al., "A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient," Physics in Medicine and Biology, 45, 1051-1070, 2000.
  • [28] G. H. Golub and C. F. V. Loan, Matrix computations (3rd ed.): Johns Hopkins University Press, 1996.
  • [29] M. A. O'Leary, "Imaging with diffuse photon density waves," Physics, University of Pennsylvania; United States, 1996.

Diffüz Optik Tomografi için Yeniden Yapılanma Algoritmalarının Karşılaştırılması

Year 2019, , 285 - 295, 30.11.2019
https://doi.org/10.29233/sdufeffd.549528

Abstract

Diffüz
optik tomografi (DOT), kanser tanısı veya kanser takibi için meme dokusunun
doku kromoforlarının uzaysal dağılımını görüntülemek için 750-950 nm dalga boyu
aralığını kullanır. DOT, doku optik özelliklerinin geri çatım teknikleri ile
tomografik olarak gösterilmesini sağlar. Görüntülerdeki gürültüleri en aza
indirmek ve daha gerçekçi tomografik görüntüler elde etmek için çeşitli geri çatım
teknikleri geliştirilmiştir. Dört farklı geri çatım tekniklerini karşılaştırmak
için DOT sistemi ile doku fantomu kullanılarak veriler elde edildi. Doku
fantomundaki inklüzyonun konumu belirleme açısından Cebirsel geri çatım tekniği
(ART), eşzamanlı cebirsel geri çatım tekniği (SIRT), tekil nokta ayrışması (TSVD)
ve kesikli eşlenik gradyent (TCG) teknikleri karşılaştırılmıştır. Alt uzay
tekniklerinden TSVD ve TCG ile oluşturulan görüntülerdeki inklüzyonun konumu,
cebirsel yöntemlerden ART ve SIRT' den daha iyi konumlandırıldığı
gösterilmiştir. Ayrıca, TSVD ve TCG tarafından oluşturulan görüntüler, ART ve
SIRT ile oluşturulan görüntülere göre daha az gürültü olarak elde edilmiştir.

References

  • [1] A. Yodh and B. Chance, "Spectroscopy and imaging with diffusing light," Physics Today, 48, 34-40, 1995.
  • [2] H. B. Jiang, N. V. Iftimia, Y. Xu, J. A. Eggert, L. L. Fajardo, and K. L. Klove, "Near-infrared optical imaging of the breast with model-based reconstruction," Academic Radiology, 9, 186-194, 2002.
  • [3] Z. Yuan, Q. Z. Zhang, E. S. Sobel, and H. B. Jiang, "Image-guided optical spectroscopy in diagnosis of osteoarthritis: a clinical study," Biomedical Optics Express, 1, 74-86, 2010.
  • [4] Z. Yuan, "Combining independent component analysis and Granger causality to investigate brain network dynamics with fNIRS measurements," Biomedical Optics Express, 4, 2629-2643, 2013.
  • [5] R. C. Mesquita, M. A. Franceschini, and D. A. Boas, "Resting state functional connectivity of the whole head with near-infrared spectroscopy," Biomedical Optics Express, 1, 324-336, 2010.
  • [6] D. Lighter, J. Hughes, I. Styles, A. Filer, and H. Dehghani, "Multispectral, non-contact diffuse optical tomography of healthy human finger joints," Biomedical Optics Express, 9, 1445-1460, 2018.
  • [7] V. Ntziachristos, "Fluorescence molecular imaging," Annual Review of Biomedical Engineering, 8, 1-33, 2006.
  • [8] L. Wang, S. L. Jacques, and L. Zheng, "MCML—Monte Carlo modeling of light transport in multi-layered tissues," Computer Methods and Programs in Biomedicine, 47, 131-146, 1995.
  • [9] B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O'Sullivan, A. E. Cerussi, P. M. Carpenter, et al., "Predicting Responses to Neoadjuvant Chemotherapy in Breast Cancer: ACRIN 6691 Trial of Diffuse Optical Spectroscopic Imaging," Cancer Research, 76, 5933-5944, 2016.
  • [10] T. Shimokawa, T. Ishii, Y. Takahashi, S. Sugawara, M.-a. Sato, and O. Yamashita, "Diffuse optical tomography using multi-directional sources and detectors," Biomedical Optics Express, 7, 2623-2640, 2016.
  • [11] S. R. Arridge and M. Schweiger, "A gradient-based optimisation scheme for optical tomography," Optics Express, 2, 213-226, 1998.
  • [12] S. R. Arridge and M. Schweiger, "Image reconstruction in optical tomography," Philosophical Transactions of the Royal Society of London B: Biological Sciences, 352, 717-726, 1997.
  • [13] C. L. Matson, N. Clark, L. McMackin, and J. S. Fender, "Three-dimensional tumor localization in thick tissue with the use of diffuse photon-density waves," Applied Optics, 36, 214-220, 1997.
  • [14] S. B. Colak, D. G. Papaioannou, G. W. tHooft, M. B. vanderMark, H. Schomberg, J. C. J. Paasschens, et al., "Tomographic image reconstruction from optical projections in light-diffusing media," Applied Optics, 36, 180-213, 1997.
  • [15] T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, "Diffuse optics for tissue monitoring and tomography," Reports on Progress in Physics, 73, 2010.
  • [16] R. Endoh, A. Suzuki, M. Fujii, and K. Nakayama, "Fundamental study on diffuse reflective optical tomography," Physics in Medicine and Biology, 49, 1881, 2004.
  • [17] A. C. Kak and M. Slaney, Principles of computerized tomographic imaging: SIAM, 2001.
  • [18] S. L. Jacques and L. Wang, "Monte Carlo modeling of light transport in tissues," in Optical-Thermal response of laser-irradiated tissue, ed: Springer, 1995, pp. 73-100.
  • [19] D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, "Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head," Optics Express, 10, 159-170, 2002.
  • [20] R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, et al., "A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient," Physics in Medicine & Biology, 45, 1051, 2000.
  • [21] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical recipes in C: the art of scientific computing: Cambridge University Press, 1988.
  • [22] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: SIAM, 1998.
  • [23] O. Alter, P. O. Brown, and D. Botstein, "Singular value decomposition for genome-wide expression data processing and modeling," Proceedings of the National Academy of Sciences of the United States of America, 97, 10101-10106, 2000.
  • [24] H. O. Kazanci, T. Mercan, and M. Canpolat, "Design and evaluation of a reflectance diffuse optical tomography system," Optical and Quantum Electronics, 47, 257-265, 2015.
  • [25] T. J. Farrell, M. S. Patterson, and B. Wilson, "A Diffusion-Theory Model of Spatially Resolved, Steady-State Diffuse Reflectance for the Noninvasive Determination of Tissue Optical-Properties Invivo," Medical Physics, 19, 879-888, 1992.
  • [26] S. R. Arridge, "Optical tomography in medical imaging," Inverse Problems, 15, R41-R93, 1999.
  • [27] R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, et al., "A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient," Physics in Medicine and Biology, 45, 1051-1070, 2000.
  • [28] G. H. Golub and C. F. V. Loan, Matrix computations (3rd ed.): Johns Hopkins University Press, 1996.
  • [29] M. A. O'Leary, "Imaging with diffuse photon density waves," Physics, University of Pennsylvania; United States, 1996.
There are 29 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Tanju Mercan This is me 0000-0002-6711-6003

Gençay Sevim 0000-0002-2157-3209

Yiğit Ali Üncü 0000-0001-7398-9540

Serkan Uslu This is me 0000-0002-0875-5905

Hüseyin Özgür Kazancı 0000-0003-0036-7657

Murat Canpolat 0000-0003-3298-9725

Publication Date November 30, 2019
Published in Issue Year 2019

Cite

IEEE T. Mercan, G. Sevim, Y. A. Üncü, S. Uslu, H. Ö. Kazancı, and M. Canpolat, “The Comparison of Reconstruction Algorithms for Diffuse Optical Tomography”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 14, no. 2, pp. 285–295, 2019, doi: 10.29233/sdufeffd.549528.

Cited By






Difüz Optik Tomografi Sisteminde Görüntü İşleme Uygulamalarının Test Edilmesi
Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi
Yiğit Ali ÜNCÜ
https://doi.org/10.29233/sdufeffd.825542