Research Article
BibTex RIS Cite

Spin-1 Tek Boyutlu Ising Sisteminin Manyetik Özellikleri

Year 2019, , 127 - 135, 31.05.2019
https://doi.org/10.29233/sdufeffd.556686

Abstract

Bu çalışmada, etkin alan teorisinde Kaneyoshi
yaklaşımı kullanarak tek boyutlu Ising sisteminin (S1-1DIS) spin-1’in sıcaklık
ve dış manyetik alana bağlı mıknatıslanma ve kuadrapol momenti araştırıldı. S1-1DIS'in
kristal alanına göre birinci veya ikinci dereceden bir faz geçişine sahip
olduğu; S1-1DIS'in mıknatıslanmasının D = 0 için ikinci dereceden bir faz
geçişine sahip olduğu; ancak kuadrupolar momentin T
c'de faz geçişine
sahip olmadığı belirlendi. S1-1DIS’ in mıknatıslanması, T
f’ de D =
-2.6 için birinci dereceden bir faz geçişine sahiptir, ancak kuadrupolar moment
T
f ve T>Tf’ de artarken faz geçişine sahiptir;
paramanyetik manyetik alınganlık, T> T
c'de monotonik olarak
azalır, oysa T> T
f’ de geniş bir maksimuma sahiptir. T>Tc
ve T
f’deki MT = 0.0 nedeniyle, paramanyetik bölgedeki alınganlık davranışlarının
kuadrupolar momentten kaynaklandığı sonucuna varılabilir. Diğer taraftan, MT’ nin
histerezis eğrilerinin eğimi, sıcaklık arttıkça azalır ve yüksek sıcaklıkta
sıfır olur. S1-1DIS’in birinci dereceden faz geçişinin teorik sonucu, ilk olarak
Kittel tarafından bildirilen KH2PO4’ün (KPD) bir boyutlu sisteminin T≠0 da
birinci dereceden bir faz geçişine uğradığı sonucunun teyididir.

References

  • T. Kaneyoshi, “Differential operator technique in the Ising spin systems,” Acta Phys. Pol., A 83, 703-738, 1993.
  • T. Kaneyoshi, “Magnetizations of a nanoparticle described by the transverse Ising model,” J. Magn. Magn. Mater., 321, 3430-3435, 2009.
  • T. Kaneyoshi, “Ferrimagnetic magnetizations of transverse Ising thin films with diluted surfaces,” J. Magn. Magn. Mater.,321, 3630-3636, 2009.
  • T. Kaneyoshi, “Magnetizations of a transverse Ising nanowire,” J. Magn. Magn. Mater., 322, 3410-3415, 2010.
  • T. Kaneyoshi, “Phase diagrams of a transverse Ising nanowire,” J. Magn. Magn. Mater., 322, 3014-3018, 2010.
  • T. Kaneyoshi, “Clear distinctions between ferromagnetic and ferrimagnetic behaviors in a cylindrical Ising nanowire (or nanotube),” J. Magn. Magn. Mater., 323, 2483-2486, 2011.
  • T. Kaneyoshi, “Some characteristic properties of initial susceptibility in a Ising nanotube,” J. Magn. Magn. Mater., 323, 1145-1151,2011.
  • T. Kaneyoshi, “Ferrimagnetism in a ultra-thin decorated Ising film,” J. Magn. Magn. Mater.,336, 8-13, 2013.
  • T. Kaneyoshi, “Reentrant phenomena in a transverse Ising nanowire (or nanotube) with a diluted surface: Effects of interlayer coupling at the surface,” J. Magn. Magn. Mater., 339, 151-156, 2013.
  • T. Kaneyoshi, “Ferrimagnetic magnetizations in a thin film described by the transverse Ising model,” Phys. Status Solidi (b), 246, 2359-2365, 2009.
  • T. Kaneyoshi, “Magnetic properties of a cylindrical Ising nanowire (or nanotube),” Phys. Status Solidi (b), 248, 250-258, 2011.
  • T. Kaneyoshi, “Phase diagrams of a cylindrical transverse Ising ferrimagnetic nanotube; Effects of surface dilution,” Solid State Commun., 151, 1528-1532,2011.
  • T. Kaneyoshi, “The possibility of a compensation point induced by a transverse field in transverse Ising nanoparticles with a negative core–shell coupling,” Solid State Commun.,152, 883-886, 2012.
  • T. Kaneyoshi, “Ferrimagnetism in a decorated Ising nanowire,” Phys. Lett. A, 376, 2352-2356, 2012.
  • T. Kaneyoshi, “The effects of surface dilution on magnetic properties in a transverse Ising nanowire,” Physica A, 391, 3616-3628, 2012.
  • T. Kaneyoshi, “Phase diagrams in an Ising nanotube (or nanowire) with a diluted surface; Effects of interlayer coupling at the surface,” Physica A, 392, 2406-2414, 2013.
  • T. Kaneyoshi, “Characteristic phenomena in nanoscaled transverse Ising thin films with diluted surfaces,” Physica B, 407, 4358-4364, 2012.
  • T. Kaneyoshi, “Phase diagrams in a ultra-thin transverse Ising film with bond or site dilution at surfaces,” Physica B, 414, 72-77, 2013.
  • T. Kaneyoshi, “Characteristic behaviors in an ultrathin Ising film with site- (or bond-) dilution at the surfaces,” Physica B, 436, 208-214, 2014.
  • T. Kaneyoshi, “Unconventional magnetic properties in transverse Ising nanoislands: Effects of interlayer coupling,” Physica E, 65, 100-105, 2015.
  • W. Jiang, X. X. Li, L. M. Liu, J. N. Chen and F. Zhang, “Hysteresis loop of a cubic nanowire in the presence of the crystal field and the transverse field,” J. Magn. Magn. Mater., 353, 90-98, 2014.
  • W. Jiang, X. X. Li and L. M. Liu, “Surface effects on a multilayer and multisublattice cubic nanowire with core/shell,” Physica E, 53, 29-35, 2013.
  • M. Ertaş and Y. Kocakaplan, “Dynamic behaviors of the hexagonal Ising nanowire,” Phys. Lett. A, 378, 845-850, 2014.
  • Y. Kocakaplan, E. Kantar and M. Keskin, “Hysteresis loops and compensation behavior of cylindrical transverse spin-1 Ising nanowire with the crystal field within effective-field theory based on a probability distribution technique,” Eur. Phys. J. B., 86, 420, 2013.
  • S. Bouhou, I. Essaoudi, A. Ainane, M. Saber, R. Ahuja and F. Dujardin, “Phase diagrams of diluted transverse Ising nanowire,” J. Magn. Magn. Mater., 336, 75-82, 2013.
  • A. Zaim, M. Kerouad and M. Boughrara, “Effects of the random field on the magnetic behavior of nanowires with core/shell morphology,” J. Magn. Magn. Mater., 331, 37-44, 2013.
  • N. Şarlı and M. Keskin, “Two distinct magnetic susceptibility peaks and magnetic reversal events in a cylindrical core/shell spin-1 Ising nanowire,” Solid State Commun., 152, 354-359, 2012.
  • M. Keskin, N. Şarlı and B. Deviren, “Hysteresis behaviors in a cylindrical Ising nanowire,” Solid State Commun., 151, 1025-1030, 2011.
  • Y. Yüksel, Ü. Akıncı and H. Polat, “Investigation of bond dilution effects on the magnetic properties of a cylindrical Ising nanowire,” Phys. Status Solidi (b,) 250, 196-206, 2013.
  • Y. Yüksel, Ü. Akıncı and H. Polat, “Investigation of critical phenomena and magnetism in amorphous Ising nanowire in the presence of transverse fields,” Physica A, 392, 2347-2358, 2013.
  • Ü. Akıncı, “Effects of the randomly distributed magnetic field on the phase diagrams of the Ising Nanowire II: Continuous distributions,” J. Magn. Magn. Mater., 324, 4237-4244, 2012.
  • Ü. Akıncı, “Effects of the randomly distributed magnetic field on the phase diagrams of Ising nanowire I: Discrete distributions,” J. Magn. Magn. Mater., 324, 3951-3960, 2012.
  • E. Kantar and Y. Kocakaplan, “Hexagonal type Ising nanowire with core/shell structure: The phase diagrams and compensation behaviors,” Solid State Commun., 177, 1-6, 2014.
  • E. Kantar and M. Keskin, “Thermal and magnetic properties of ternary mixed Ising nanoparticles with core–shell structure: Effective-field theory approach,” J. Magn. Magn. Mater.,349, 165-172, 2014.
  • E. Kantar, B. Deviren and M. Keskin, “Magnetic properties of mixed Ising nanoparticles with core-shell structure,” Eur. Phys. J. B, 86, 253, 2013.
  • H. Magoussi, A. Zaim and M. Kerouad, “Effects of the trimodal random field on the magnetic properties of a spin-1 Ising nanotube,” Chinese Phys. B, 22, 116401, 2013.
  • N. Şarlı, “Band structure of the susceptibility, internal energy and specific heat in a mixed core/shell Ising nanotube,” Physica B, 411, 12-25, 2013.
  • C. D. Wang and R. G. Ma, “Force induced phase transition of honeycomb-structured ferroelectric thin film,” Physica A, 392, 3570-3577, 2013.
  • N. Şarlı, “Paramagnetic atom number and paramagnetic critical pressure of the sc, bcc and fcc Ising nanolattices,” J. Magn. Magn. Mater., 374, 238-244, 2015.
  • N. Şarlı, S. Akbudak and M. R. Ellialtıoğlu, “The peak effect (PE) region of the antiferromagnetic two-layer Ising nanographene,” Physica B, 452, 18-22, 2014.
  • N. Şarlı, “The effects of next nearest-neighbor exchange interaction on the magnetic properties in the one-dimensional Ising system,” Physica E, 63, 324-328, 2014.
  • N. Bhattacharya and A. R. Chowdhury, “Statistical mechanics of a one-dimensional ferromagnetic chain with an impurity under an external field,” Phys. Rev. B, 49, 647, 1994.
  • M. E. Zhitomirsky and A. Honecker, “Magnetocaloric effect in one-dimensional antiferromagnets,” J. Stat. Mech., P07012, 2004.
  • G. Ismail and S. Hassan, “Metastability of Ising spin chains with nearest-neighbour and next-nearest-neighbour interactions in random fields,” Chinese Phys., 11, 948-954, 2002.
  • M. G. Pini and A. Rettori, “Effect of antiferromagnetic exchange interactions on the Glauber dynamics of one-dimensional Ising models,” Phys. Rev. B, 76, 064407, 2007.
  • S. Ares, J. A. Cuesta, A. Sanchez, and R. Toral, “Apparent phase transitions in finite one-dimensional sine-Gordon lattices”Phys. Rev. E, 67, 046108, 2003.
  • S. T. Chui, and J. D. Weeks, “Pinning and roughening of one-dimensional models of interfaces and steps,” Phys. Rev. B, 23, 2438-2445, 1981.
  • T. W. Burkhardt, “Localisation-delocalisation transition in a solid-on-solid model with a pinning potential,” J. Phys. A: Math. and Gen., 14, L63-L68, 1981.
  • T. Dauxois, and M. Peyrard, “Entropy-driven transition in a one-dimensional system,” Phys. Rev. E, 51, 4027-4040, 1995.
  • T. Dauxois, N. Theodorakopoulos, and M. Peyrard, “Thermodynamic Instabilities in One Dimension: Correlations, Scaling and Solitons,” J. Stat. Phys.,107 (3-4), 869-891, 2002.
  • L. van Hove, “Sur l’integrale de configuration pour les systemes de particules a une dimension,” Physica, 16, 137-143, 1950.
  • E. H. Lieb, and D. C. Mattis, Mathematical Physics in One Dimension. Londan: Academic Press, 1966, pp. 25-108.
  • D. Ruelle, Statistical Mechanics: Rigorous Results. Londan: Imperial College Press, 1989, pp. 108-143.
  • F. J. Dyson, “Existence of a phase-transition in a one-dimensional Ising ferromagnet,” Comm. Math. Phys.,12 (2), 91-107, 1969.
  • L. D. Landau, and E. M. Lifshitz, Statistical Physics, Part 1. New York: Pergamon, 1980, pp. 171-179.
  • C. Kittel, “Phase Transition of a Molecular Zipper,” Am. J. Phys., 37, 917-920, 1969.
  • T. Kaneyoshi, “Spin-glass ordering temperature beyond its mean-field value,” Phys. Rev. B, 24, 2693-2701, 1981.
  • M. Bałanda, “AC Susceptibility Studies of Phase Transitions and Magnetic Relaxation: Conventional, Molecular and Low-Dimensional Magnets,” Acta Phys. Pol. A, 124, 964-976, 2013.
  • M. Bałanda, Z. Tomkowicz, W. Haase, and M. Rams, “Single-chain magnet features in 1D [MnR4TPP][TCNE] compounds,” J. Phys.: Conf. Ser., 303 (1), 012036, 2011.
  • A. Panja, N. Shaikh, P. Vojtisek, S. Gao, and P. Banerjee, “Synthesis, crystal structures and magnetic properties of 1D polymeric [MnIII(salen)N3] and [MnIII(salen)Ag(CN)2] complexes,” New J. Chem., 26, 1025-1028, 2002.

Magnetic Properties of Spin-1 One-Dimensional Ising System

Year 2019, , 127 - 135, 31.05.2019
https://doi.org/10.29233/sdufeffd.556686

Abstract

In this work, we
investigated the temperature and applied field dependence of the magnetization
and quadrupolar moment of the spin-1 one-dimensional Ising system (S1-1DIS) by
using Kaneyoshi approach throughout the Effective Field Theory (EFT). We
determined that the S1-1DIS has a first or second order phase transition
according to the crystal field, the magnetization of the S1-1DIS has a
second-order phase transition for D=0 whereas the quadrupolar moment has no
phase transition at T
c. The magnetization of the S1-1DIS has a
first-order phase transition for D=-2.6 at T
f but the quadrupolar
moment has phase transition at T
f and it increases at T>Tf,
paramagnetic magnetic susceptibility decreases monotonically at T
>Tc
whereas it has a broad maximum at
T>Tf.
Because of the M
T=0.0 at T>Tc and Tf,
it can be concluded
that susceptibility behaviors in the paramagnetic
region result from the quadrupolar moment. On the other hand, the slope of the
hysteresis curves of the M
T decreases as the temperature increases
and they become zero at high temperature.
The
theoretical first-order phase transition result of the S1-1DIS is the
confirmation of the result of KH2PO4 (KPD) firstly reported by Kittel that
one-dimensional system of the KPD undergoes a first-order phase transition at
T≠0.

References

  • T. Kaneyoshi, “Differential operator technique in the Ising spin systems,” Acta Phys. Pol., A 83, 703-738, 1993.
  • T. Kaneyoshi, “Magnetizations of a nanoparticle described by the transverse Ising model,” J. Magn. Magn. Mater., 321, 3430-3435, 2009.
  • T. Kaneyoshi, “Ferrimagnetic magnetizations of transverse Ising thin films with diluted surfaces,” J. Magn. Magn. Mater.,321, 3630-3636, 2009.
  • T. Kaneyoshi, “Magnetizations of a transverse Ising nanowire,” J. Magn. Magn. Mater., 322, 3410-3415, 2010.
  • T. Kaneyoshi, “Phase diagrams of a transverse Ising nanowire,” J. Magn. Magn. Mater., 322, 3014-3018, 2010.
  • T. Kaneyoshi, “Clear distinctions between ferromagnetic and ferrimagnetic behaviors in a cylindrical Ising nanowire (or nanotube),” J. Magn. Magn. Mater., 323, 2483-2486, 2011.
  • T. Kaneyoshi, “Some characteristic properties of initial susceptibility in a Ising nanotube,” J. Magn. Magn. Mater., 323, 1145-1151,2011.
  • T. Kaneyoshi, “Ferrimagnetism in a ultra-thin decorated Ising film,” J. Magn. Magn. Mater.,336, 8-13, 2013.
  • T. Kaneyoshi, “Reentrant phenomena in a transverse Ising nanowire (or nanotube) with a diluted surface: Effects of interlayer coupling at the surface,” J. Magn. Magn. Mater., 339, 151-156, 2013.
  • T. Kaneyoshi, “Ferrimagnetic magnetizations in a thin film described by the transverse Ising model,” Phys. Status Solidi (b), 246, 2359-2365, 2009.
  • T. Kaneyoshi, “Magnetic properties of a cylindrical Ising nanowire (or nanotube),” Phys. Status Solidi (b), 248, 250-258, 2011.
  • T. Kaneyoshi, “Phase diagrams of a cylindrical transverse Ising ferrimagnetic nanotube; Effects of surface dilution,” Solid State Commun., 151, 1528-1532,2011.
  • T. Kaneyoshi, “The possibility of a compensation point induced by a transverse field in transverse Ising nanoparticles with a negative core–shell coupling,” Solid State Commun.,152, 883-886, 2012.
  • T. Kaneyoshi, “Ferrimagnetism in a decorated Ising nanowire,” Phys. Lett. A, 376, 2352-2356, 2012.
  • T. Kaneyoshi, “The effects of surface dilution on magnetic properties in a transverse Ising nanowire,” Physica A, 391, 3616-3628, 2012.
  • T. Kaneyoshi, “Phase diagrams in an Ising nanotube (or nanowire) with a diluted surface; Effects of interlayer coupling at the surface,” Physica A, 392, 2406-2414, 2013.
  • T. Kaneyoshi, “Characteristic phenomena in nanoscaled transverse Ising thin films with diluted surfaces,” Physica B, 407, 4358-4364, 2012.
  • T. Kaneyoshi, “Phase diagrams in a ultra-thin transverse Ising film with bond or site dilution at surfaces,” Physica B, 414, 72-77, 2013.
  • T. Kaneyoshi, “Characteristic behaviors in an ultrathin Ising film with site- (or bond-) dilution at the surfaces,” Physica B, 436, 208-214, 2014.
  • T. Kaneyoshi, “Unconventional magnetic properties in transverse Ising nanoislands: Effects of interlayer coupling,” Physica E, 65, 100-105, 2015.
  • W. Jiang, X. X. Li, L. M. Liu, J. N. Chen and F. Zhang, “Hysteresis loop of a cubic nanowire in the presence of the crystal field and the transverse field,” J. Magn. Magn. Mater., 353, 90-98, 2014.
  • W. Jiang, X. X. Li and L. M. Liu, “Surface effects on a multilayer and multisublattice cubic nanowire with core/shell,” Physica E, 53, 29-35, 2013.
  • M. Ertaş and Y. Kocakaplan, “Dynamic behaviors of the hexagonal Ising nanowire,” Phys. Lett. A, 378, 845-850, 2014.
  • Y. Kocakaplan, E. Kantar and M. Keskin, “Hysteresis loops and compensation behavior of cylindrical transverse spin-1 Ising nanowire with the crystal field within effective-field theory based on a probability distribution technique,” Eur. Phys. J. B., 86, 420, 2013.
  • S. Bouhou, I. Essaoudi, A. Ainane, M. Saber, R. Ahuja and F. Dujardin, “Phase diagrams of diluted transverse Ising nanowire,” J. Magn. Magn. Mater., 336, 75-82, 2013.
  • A. Zaim, M. Kerouad and M. Boughrara, “Effects of the random field on the magnetic behavior of nanowires with core/shell morphology,” J. Magn. Magn. Mater., 331, 37-44, 2013.
  • N. Şarlı and M. Keskin, “Two distinct magnetic susceptibility peaks and magnetic reversal events in a cylindrical core/shell spin-1 Ising nanowire,” Solid State Commun., 152, 354-359, 2012.
  • M. Keskin, N. Şarlı and B. Deviren, “Hysteresis behaviors in a cylindrical Ising nanowire,” Solid State Commun., 151, 1025-1030, 2011.
  • Y. Yüksel, Ü. Akıncı and H. Polat, “Investigation of bond dilution effects on the magnetic properties of a cylindrical Ising nanowire,” Phys. Status Solidi (b,) 250, 196-206, 2013.
  • Y. Yüksel, Ü. Akıncı and H. Polat, “Investigation of critical phenomena and magnetism in amorphous Ising nanowire in the presence of transverse fields,” Physica A, 392, 2347-2358, 2013.
  • Ü. Akıncı, “Effects of the randomly distributed magnetic field on the phase diagrams of the Ising Nanowire II: Continuous distributions,” J. Magn. Magn. Mater., 324, 4237-4244, 2012.
  • Ü. Akıncı, “Effects of the randomly distributed magnetic field on the phase diagrams of Ising nanowire I: Discrete distributions,” J. Magn. Magn. Mater., 324, 3951-3960, 2012.
  • E. Kantar and Y. Kocakaplan, “Hexagonal type Ising nanowire with core/shell structure: The phase diagrams and compensation behaviors,” Solid State Commun., 177, 1-6, 2014.
  • E. Kantar and M. Keskin, “Thermal and magnetic properties of ternary mixed Ising nanoparticles with core–shell structure: Effective-field theory approach,” J. Magn. Magn. Mater.,349, 165-172, 2014.
  • E. Kantar, B. Deviren and M. Keskin, “Magnetic properties of mixed Ising nanoparticles with core-shell structure,” Eur. Phys. J. B, 86, 253, 2013.
  • H. Magoussi, A. Zaim and M. Kerouad, “Effects of the trimodal random field on the magnetic properties of a spin-1 Ising nanotube,” Chinese Phys. B, 22, 116401, 2013.
  • N. Şarlı, “Band structure of the susceptibility, internal energy and specific heat in a mixed core/shell Ising nanotube,” Physica B, 411, 12-25, 2013.
  • C. D. Wang and R. G. Ma, “Force induced phase transition of honeycomb-structured ferroelectric thin film,” Physica A, 392, 3570-3577, 2013.
  • N. Şarlı, “Paramagnetic atom number and paramagnetic critical pressure of the sc, bcc and fcc Ising nanolattices,” J. Magn. Magn. Mater., 374, 238-244, 2015.
  • N. Şarlı, S. Akbudak and M. R. Ellialtıoğlu, “The peak effect (PE) region of the antiferromagnetic two-layer Ising nanographene,” Physica B, 452, 18-22, 2014.
  • N. Şarlı, “The effects of next nearest-neighbor exchange interaction on the magnetic properties in the one-dimensional Ising system,” Physica E, 63, 324-328, 2014.
  • N. Bhattacharya and A. R. Chowdhury, “Statistical mechanics of a one-dimensional ferromagnetic chain with an impurity under an external field,” Phys. Rev. B, 49, 647, 1994.
  • M. E. Zhitomirsky and A. Honecker, “Magnetocaloric effect in one-dimensional antiferromagnets,” J. Stat. Mech., P07012, 2004.
  • G. Ismail and S. Hassan, “Metastability of Ising spin chains with nearest-neighbour and next-nearest-neighbour interactions in random fields,” Chinese Phys., 11, 948-954, 2002.
  • M. G. Pini and A. Rettori, “Effect of antiferromagnetic exchange interactions on the Glauber dynamics of one-dimensional Ising models,” Phys. Rev. B, 76, 064407, 2007.
  • S. Ares, J. A. Cuesta, A. Sanchez, and R. Toral, “Apparent phase transitions in finite one-dimensional sine-Gordon lattices”Phys. Rev. E, 67, 046108, 2003.
  • S. T. Chui, and J. D. Weeks, “Pinning and roughening of one-dimensional models of interfaces and steps,” Phys. Rev. B, 23, 2438-2445, 1981.
  • T. W. Burkhardt, “Localisation-delocalisation transition in a solid-on-solid model with a pinning potential,” J. Phys. A: Math. and Gen., 14, L63-L68, 1981.
  • T. Dauxois, and M. Peyrard, “Entropy-driven transition in a one-dimensional system,” Phys. Rev. E, 51, 4027-4040, 1995.
  • T. Dauxois, N. Theodorakopoulos, and M. Peyrard, “Thermodynamic Instabilities in One Dimension: Correlations, Scaling and Solitons,” J. Stat. Phys.,107 (3-4), 869-891, 2002.
  • L. van Hove, “Sur l’integrale de configuration pour les systemes de particules a une dimension,” Physica, 16, 137-143, 1950.
  • E. H. Lieb, and D. C. Mattis, Mathematical Physics in One Dimension. Londan: Academic Press, 1966, pp. 25-108.
  • D. Ruelle, Statistical Mechanics: Rigorous Results. Londan: Imperial College Press, 1989, pp. 108-143.
  • F. J. Dyson, “Existence of a phase-transition in a one-dimensional Ising ferromagnet,” Comm. Math. Phys.,12 (2), 91-107, 1969.
  • L. D. Landau, and E. M. Lifshitz, Statistical Physics, Part 1. New York: Pergamon, 1980, pp. 171-179.
  • C. Kittel, “Phase Transition of a Molecular Zipper,” Am. J. Phys., 37, 917-920, 1969.
  • T. Kaneyoshi, “Spin-glass ordering temperature beyond its mean-field value,” Phys. Rev. B, 24, 2693-2701, 1981.
  • M. Bałanda, “AC Susceptibility Studies of Phase Transitions and Magnetic Relaxation: Conventional, Molecular and Low-Dimensional Magnets,” Acta Phys. Pol. A, 124, 964-976, 2013.
  • M. Bałanda, Z. Tomkowicz, W. Haase, and M. Rams, “Single-chain magnet features in 1D [MnR4TPP][TCNE] compounds,” J. Phys.: Conf. Ser., 303 (1), 012036, 2011.
  • A. Panja, N. Shaikh, P. Vojtisek, S. Gao, and P. Banerjee, “Synthesis, crystal structures and magnetic properties of 1D polymeric [MnIII(salen)N3] and [MnIII(salen)Ag(CN)2] complexes,” New J. Chem., 26, 1025-1028, 2002.
There are 60 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Gökçen Dikici Yıldız 0000-0002-5751-0795

Publication Date May 31, 2019
Published in Issue Year 2019

Cite

IEEE G. Dikici Yıldız, “Magnetic Properties of Spin-1 One-Dimensional Ising System”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 14, no. 1, pp. 127–135, 2019, doi: 10.29233/sdufeffd.556686.