Research Article
BibTex RIS Cite

The Relationship between Soil Gas Radon Concentration Level and the Distance of Sampling Point to Akşehir Fault Zone

Year 2019, , 402 - 407, 30.11.2019
https://doi.org/10.29233/sdufeffd.623677

Abstract

Radon is a tasteless, odorless,
colorless
radioactive noble gas which is produced in the decay chain of
uranium existed in the rock layer.
Since
radon is in the gas form,
it is more mobile than its parent radionuclides
which namely are uranium and radium.
Therefore, radon can easily
escape soil and rocks through the pores between the soil granules, and the
openings in the rock, cracks, and fractures. Because of these characteristics,
changes in radon concentration levels are commonly used for seismological
purposes. The aim of this study is to investigate the relationship between the
radon activity concentration in soil gas on Akşehir fault zone and the vertical
distance of the sampling points to the fault zone. For this purpose,
radon
activity concentrations were monthly determined at 10 sampling points during
six-month period. Although no significant correlation can be seen for all
sampling points at all, a correlation coefficient of 0.96 was obtained when
only the six of sampling points taken into account.

Supporting Institution

Afyon Kocatepe University

Project Number

15.FENBİL.39.

Thanks

This research was supported by Afyon Kocatepe University Science Research Projects Coordination Unit (AKU BAPK )with the project number 15.FENBİL.39.

References

  • [1] A.B. Tanner, “Radon migration in the ground: A supplementary review”, Natural Radiation Enviroment III, (T.F. Gesell and W.M. Lowder, eds.), US Department of Energy Report CONF-780422, Washington, DC, 1980, vol. 1, pp. 5-56.
  • [2] J. Sogaard-Hansen and A. Dahkjear, “Determining, “Radon-222 diffusion lengths in soils and sediments,” Health Phys., 53, 455-459, 1987.
  • [3] H. Wakita, “Chemical challenge to earthquake prediction,” Proceedings Natural Academic Science, 93, 3781-3786, 1996.
  • [4] S.D. Schery., D.H. Gaeddert, and M.H. Wilkening, “Transport of radon from fractured rock,” Journal of Geophysical Research: Solid Earth, 87, 2969–2976, 1982.
  • [5] G. Steinitz, U. Vulkan, B. Lang, A. Gilat, and H. Zafrir, “Radon emanation along border faults of the Rift in the Dead Sea area,” Isr. J. Earth Sci, 41, 9-20,1992.
  • [6] G.M. Reimer, “Reconnaissance techniques for determining soil‐gas radon concentrations: An example from Prince Georges County, Maryland,” Geophysical Research Letters, 17, 809–812, 1990.
  • [7] J. Kemski, R. Klingel, H. Schneiders, A. Siehl, and J. Wiegand, “Geological structure and geochemistry controlling radon in soil gas,” Radiat Protection Dosimetry, 45, 235-239, 1992.
  • [8] J. Kemski, “Radonmessungen in der Bodenluft zur Lokalisierung von Störungen im Neuwieder Becken (Mittelrhein),” Bonner geowiss. Schr., 8, 144, 1993.
  • [9] M.M. Moussa and A-G. M. El Arabi, “Soil radon survey for tracing active fault: a case study along Qena-Safaga Road, Eastern Desert, Egypt,” Radiation Measurements, 37, 211-216, 2003.
  • [10] H.S. Akyüz, G. Uçarkuş, D. Şatır, A. Dikbaş, and Ö. Kozacı, “Paleoseismological investigations on surface fracture in the earthquake of 3 February 2002 Çay,” Journal of the Earth Sciences Application and Research Centre of Hacettepe University, 27 (1), 41–52, 2006.
  • [11] A. Koçyiğit, ve Ş. Deveci, “Çukurören- Çobanlar (Afyon) arasındaki deprem kaynaklarının (Aktif fayların) belirlenmesi,” The Scientific and Technological Research Council of Turkey (TÜBİTAK), Project number: 106Y209, 2007.
  • [12] Genitron Instruments, AquaKIT User Manual, Heerstrasse 149 D-60488 Frankfurt, Germany, 2008.
  • [13] Saphymo GmbH, AlphaGUARD User Manual Portable Radon Monitor, Heerstrasse 149 D-60488 Frankfurt, German, 1998.
  • [14] Saphymo GmbH, AlphaPUMP Technical Description, Heerstrasse 149 D–60488 Frankfurt, Germany, 2001.
  • [15] C.Y. King, “Episodic radon changes in subsurface soil gas along active faults and possible relation to earthquakes,” J. Geophys. Res., 85, 3065-3078, 1980.
  • [16] M. Kato, Y. Katsui, Y. Kitagawa, M. Matsui, Regional Geology of Japan. Part 1, Hokkaido, 132–139, 1990.
  • [17] N.R. Varley, and A.G. Flowers, “Radon and its correlation with some geological features of the south-west of England,” Radiation Protection Dosimetry, 45, 245-248, 1992.
  • [18] G.E. Clamp, and J. Pritchard, “Investigation of fault position and sources of radon by measurement of 238U decay series radionuclide activity in soil samples,” Environmental Geochemistry and Health, 20, 39-44, 1998.
  • [19] G. Ciotoli, M. Guerra, S. Lombardi, and E. Vittori, “Soil gas survey for tracing seismogenic faults: A case study in the Fucino Basin, central Italy,” Journal of Geophysical Research: Solid Earth, 103, 23781-23794, 1998.
  • [20] C. Tansia, A. Tallaricob, G. Iovinea, M. Folino Galloa, and G. Falconeb, “Interpretation of radon anomalies in seismotectonic and tectonic gravitational settings: the south–eastern Crati Graben (Northern Calabria, Italy),” Tectonophysics, 396, 181-193, 2005.
  • [21] P. Wang, M.V. de Hoop, R.D. Van der Hilst, P. Ma, and L. Tenorio, “Imaging of structure at and near the core mantle boundary using a generalized radon transform: 1. Construction of image gathers,” Journal of Geophysical Research: Solid Earth, 111, B12, B12304, 2006.
  • [22] X. Wang, Y. Li, J. Du, and X. Zhou, “Correlations between radon in soil gas and the activity of seismogenic faults in the Tangshan area, North China,” Radiation Measurements,60: 8-14, 2014.
  • [23] J. Vaupotic, A. Gregoric, I. Kobal, P. Zvab, K. Kozak, J. Mazur, E. Kochowska, and D. Grzadziel, “Radon concentration in soil gas and radon exhalation rate at the Ravne Fault in NW Slovenia,” Natural Hazards and Earth System Sciences, 10: 895–899, 2010.
  • [24] A. Piersanti, V. Cannelli, and G. Galli, “Long term continuous radon monitoring in a seismically active area,” Ann. Geophys, 58(4), S0437, 2015.
  • [25] Y. Yang, Y. Li, Z. Guan, Z. Chen, L. Zhang, C. J. Lv, and F. Sun, “Correlations between the radon concentrations in soil gas and the activity of the Anninghe and the Zemuhe faults in Sichuan, southwestern of China,” Applied Geochemistry, 89, 23–33, 2018.
  • [26] N. Segovia, M. Mena, P. Pena, E. Tamez, J.L. Seidel, M. Monnin, and C. Valdes, “Soil radon time series: Surveys in seismic and volcanic areas,” Radiation Measurements, 31, 307-312, 1999.
  • [27] V. Walia, S. Mahajan, A. Kumar, S. Singh, B.S. Bajwa, S. Dhar, and T.F. Yang, “Fault delineation study using soil–gas method in the Dharamsala area, NW Himalayas, India,” Radiation Measurements, 43, 337-342, 2008.

Toprak Gazı Radon Konsantrasyon Seviyesi ile Örnekleme Noktasının Akşehir Fay Hattına Uzaklığı Arasındaki İlişki

Year 2019, , 402 - 407, 30.11.2019
https://doi.org/10.29233/sdufeffd.623677

Abstract

Radon, kaya tabakasında
bulunan uranyumun bozunum zinciri içinde oluşan tatsız, kokusuz, renksiz radyoaktif
bir soy gazdır. Radon gaz halinde olduğu için, uranyum ve radyum olan ana
radyonüklidlerinden daha hareketlidir. Bu yüzden, radon, toprak granülleri
arasındaki gözeneklerden, kayadaki açıklıklar, çatlaklar ve kırıklardan
kaçmasıyla toprağı ve kayaları kolayca terk edebilir. Bu özelliklerden dolayı,
radon konsantrasyon seviyelerindeki değişiklikler genellikle sismolojik amaçlar
için kullanılır. Bu çalışmanın amacı, Akşehir fay hattındaki toprak gazında
radon aktivite konsantrasyonuyla örnekleme noktalarının fay hattına olan dik
uzaklığı arasındaki ilişkiyi incelemektir. Bu amaçla, radon aktivite
konsantrasyonları altı aylık dönemde 10 örnekleme noktasında aylık olarak
belirlenmiştir. Tüm örnekleme noktaları için anlamlı bir korelasyon
görülmemesine rağmen, yalnızca altı örnekleme noktası dikkate alındığında 0.96'lık
bir korelasyon katsayısı elde edilmiştir.

Project Number

15.FENBİL.39.

References

  • [1] A.B. Tanner, “Radon migration in the ground: A supplementary review”, Natural Radiation Enviroment III, (T.F. Gesell and W.M. Lowder, eds.), US Department of Energy Report CONF-780422, Washington, DC, 1980, vol. 1, pp. 5-56.
  • [2] J. Sogaard-Hansen and A. Dahkjear, “Determining, “Radon-222 diffusion lengths in soils and sediments,” Health Phys., 53, 455-459, 1987.
  • [3] H. Wakita, “Chemical challenge to earthquake prediction,” Proceedings Natural Academic Science, 93, 3781-3786, 1996.
  • [4] S.D. Schery., D.H. Gaeddert, and M.H. Wilkening, “Transport of radon from fractured rock,” Journal of Geophysical Research: Solid Earth, 87, 2969–2976, 1982.
  • [5] G. Steinitz, U. Vulkan, B. Lang, A. Gilat, and H. Zafrir, “Radon emanation along border faults of the Rift in the Dead Sea area,” Isr. J. Earth Sci, 41, 9-20,1992.
  • [6] G.M. Reimer, “Reconnaissance techniques for determining soil‐gas radon concentrations: An example from Prince Georges County, Maryland,” Geophysical Research Letters, 17, 809–812, 1990.
  • [7] J. Kemski, R. Klingel, H. Schneiders, A. Siehl, and J. Wiegand, “Geological structure and geochemistry controlling radon in soil gas,” Radiat Protection Dosimetry, 45, 235-239, 1992.
  • [8] J. Kemski, “Radonmessungen in der Bodenluft zur Lokalisierung von Störungen im Neuwieder Becken (Mittelrhein),” Bonner geowiss. Schr., 8, 144, 1993.
  • [9] M.M. Moussa and A-G. M. El Arabi, “Soil radon survey for tracing active fault: a case study along Qena-Safaga Road, Eastern Desert, Egypt,” Radiation Measurements, 37, 211-216, 2003.
  • [10] H.S. Akyüz, G. Uçarkuş, D. Şatır, A. Dikbaş, and Ö. Kozacı, “Paleoseismological investigations on surface fracture in the earthquake of 3 February 2002 Çay,” Journal of the Earth Sciences Application and Research Centre of Hacettepe University, 27 (1), 41–52, 2006.
  • [11] A. Koçyiğit, ve Ş. Deveci, “Çukurören- Çobanlar (Afyon) arasındaki deprem kaynaklarının (Aktif fayların) belirlenmesi,” The Scientific and Technological Research Council of Turkey (TÜBİTAK), Project number: 106Y209, 2007.
  • [12] Genitron Instruments, AquaKIT User Manual, Heerstrasse 149 D-60488 Frankfurt, Germany, 2008.
  • [13] Saphymo GmbH, AlphaGUARD User Manual Portable Radon Monitor, Heerstrasse 149 D-60488 Frankfurt, German, 1998.
  • [14] Saphymo GmbH, AlphaPUMP Technical Description, Heerstrasse 149 D–60488 Frankfurt, Germany, 2001.
  • [15] C.Y. King, “Episodic radon changes in subsurface soil gas along active faults and possible relation to earthquakes,” J. Geophys. Res., 85, 3065-3078, 1980.
  • [16] M. Kato, Y. Katsui, Y. Kitagawa, M. Matsui, Regional Geology of Japan. Part 1, Hokkaido, 132–139, 1990.
  • [17] N.R. Varley, and A.G. Flowers, “Radon and its correlation with some geological features of the south-west of England,” Radiation Protection Dosimetry, 45, 245-248, 1992.
  • [18] G.E. Clamp, and J. Pritchard, “Investigation of fault position and sources of radon by measurement of 238U decay series radionuclide activity in soil samples,” Environmental Geochemistry and Health, 20, 39-44, 1998.
  • [19] G. Ciotoli, M. Guerra, S. Lombardi, and E. Vittori, “Soil gas survey for tracing seismogenic faults: A case study in the Fucino Basin, central Italy,” Journal of Geophysical Research: Solid Earth, 103, 23781-23794, 1998.
  • [20] C. Tansia, A. Tallaricob, G. Iovinea, M. Folino Galloa, and G. Falconeb, “Interpretation of radon anomalies in seismotectonic and tectonic gravitational settings: the south–eastern Crati Graben (Northern Calabria, Italy),” Tectonophysics, 396, 181-193, 2005.
  • [21] P. Wang, M.V. de Hoop, R.D. Van der Hilst, P. Ma, and L. Tenorio, “Imaging of structure at and near the core mantle boundary using a generalized radon transform: 1. Construction of image gathers,” Journal of Geophysical Research: Solid Earth, 111, B12, B12304, 2006.
  • [22] X. Wang, Y. Li, J. Du, and X. Zhou, “Correlations between radon in soil gas and the activity of seismogenic faults in the Tangshan area, North China,” Radiation Measurements,60: 8-14, 2014.
  • [23] J. Vaupotic, A. Gregoric, I. Kobal, P. Zvab, K. Kozak, J. Mazur, E. Kochowska, and D. Grzadziel, “Radon concentration in soil gas and radon exhalation rate at the Ravne Fault in NW Slovenia,” Natural Hazards and Earth System Sciences, 10: 895–899, 2010.
  • [24] A. Piersanti, V. Cannelli, and G. Galli, “Long term continuous radon monitoring in a seismically active area,” Ann. Geophys, 58(4), S0437, 2015.
  • [25] Y. Yang, Y. Li, Z. Guan, Z. Chen, L. Zhang, C. J. Lv, and F. Sun, “Correlations between the radon concentrations in soil gas and the activity of the Anninghe and the Zemuhe faults in Sichuan, southwestern of China,” Applied Geochemistry, 89, 23–33, 2018.
  • [26] N. Segovia, M. Mena, P. Pena, E. Tamez, J.L. Seidel, M. Monnin, and C. Valdes, “Soil radon time series: Surveys in seismic and volcanic areas,” Radiation Measurements, 31, 307-312, 1999.
  • [27] V. Walia, S. Mahajan, A. Kumar, S. Singh, B.S. Bajwa, S. Dhar, and T.F. Yang, “Fault delineation study using soil–gas method in the Dharamsala area, NW Himalayas, India,” Radiation Measurements, 43, 337-342, 2008.
There are 27 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Ayla Gümüş 0000-0002-2021-6840

Hüseyin Ali Yalım 0000-0002-9452-7844

Project Number 15.FENBİL.39.
Publication Date November 30, 2019
Published in Issue Year 2019

Cite

IEEE A. Gümüş and H. A. Yalım, “The Relationship between Soil Gas Radon Concentration Level and the Distance of Sampling Point to Akşehir Fault Zone”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 14, no. 2, pp. 402–407, 2019, doi: 10.29233/sdufeffd.623677.