Research Article
BibTex RIS Cite

Borik Asidin Fibroblast Hücrelerinde Hücre Canlılığı/Sitotoksisite Etkinliğinin in vitro Olarak Değerlendirilmesi

Year 2021, , 390 - 396, 25.11.2021
https://doi.org/10.29233/sdufeffd.915866

Abstract

Son yıllarda yapılan çalışmalar bor bileşiklerinin biyolojik önemi ve insan sağlığı üzerine olası yararlı etkilerini vurgulamaktadır. Bunun yanında yüksek miktarda bor maruziyetinin olumsuz etkileri olabileceği bildirilmektedir. Borun tümör hücrelerinde anti-kanser ve anti-proliferatif etkiler gösterebileceği ile ilgili bilgiler bulunmakta, ancak bu etkilerin normal hücreleri nasıl etkileyebileceği henüz tam olarak bilinmemektedir. Çalışmamızda borik asidin (BA) hücre canlılığı/sitotoksisite üzerine etkisinin değerlendirilmesi amaçlanmıştır. Bu amaçla, L929 fare fibroblast hücreleri farklı konsantrasyonlarda BA ile 48 saat muamele edilmiştir. 2H-Tetrazolium,2-(4,5-dimethyl-2-thiazolyl)-3,5-diphenyl-,bromide (MTT) yöntemi ile mitokondriyal aktivite belirlenmiş, nötral kırmızısı alımı (NR) yöntemi ile lizozomal aktivite değerlendirilmiştir. MTT testi ile 3,125-100 mM BA gruplarında (p<0,05; p<0,001); NR testi ile 25-100 mM BA gruplarında (p<0,01; p<0,001) hücre canlılığında azalma olduğu tespit edilmiştir. Borik asidin in vitro koşullarda konsantrasyona bağlı olarak mitokondriyal ve lizozomal aktiviteyi etkileyerek hücre canlılığını azalttığı bulunmuştur. Borik asidin etkin tedavi dozunun belirlenmesi için in vivo çalışmaların yapılmasına ihtiyaç olduğu düşünülmüştür.

References

  • [1] A. Tombuloglu, H. Copoglu, Y. Aydin-Son, and N.T. Guray, “In vitro effects of boric acid on human liver hepatoma cell line (HepG2) at the half-maximal inhibitory concentration,” J Trace Elem Med Biol, 62, 126573, 2020.
  • [2] F. Akbas and Z. Aydin, “Boric acid increases the expression levels of human anion exchanger genes SLC4A2 and SLC4A3,” Genet Mol Res, 11(2), 847-854, 2012.
  • [3] S. Yılmaz, A. Ustundag, O.C. Ulker, and Y. Duydu, “Protective effect of boric acid on oxidative DNA damage in Chinese hamster lung fibroblast V79 cell lines,” Cell J, 17(4), 748-754, 2016.
  • [4] S. Ince, I. Kucukkurt, I.H. Cigerci, A.F. Fatih, and A. Eryavuz, “The effects of dietary boric acid and borax supplementation on lipid peroxidation, antioxidant activity, and DNA damage in rats,” J Trace Elem Med Biol, 24(3), 161-164, 2010.
  • [5] F. Simsek, “An in vitro study in which new boron derivatives maybe an option for breast cancer treatment,” Eurasian J Med Oncol, 3(1), 22-27, 2019.
  • [6] P.M. Coates, M.R. Blackman, G.M. Cragg, M. Levine, J. Moss, and J.D. White, Encyclopedia of dietary supplements. Boca Raton: CRC Press, 2015, ch.8.
  • [7] M.C. Emanet, O. Sen, and M. Culha, “Hexagonal boron nitride nanoparticles for prostate cancer treatment,” ACS Appl Nano Mater, 3(3), 2364-2372, 2020.
  • [8] X. Li, X. Wang, J. Zhang, N. Hanagata, X. Wang, and Q. Weng, “Hollow boron nitride nanospheres as boron reservoir for prostate cancer treatment,” Nat Commun, 8,13936, 2017.
  • [9] Y. Cui, M.I. Winton, Z.F. Zhang, C. Rainey, J. Marshall, and J.B. De Kernion, “Dietary boron intake and prostate cancer risk,” Oncol Rep, 11(4), 887-892, 2004.
  • [10] M.S. Touillaud, P.C. Pillow, J. Jakovljevic, M.L. Bondy, S.E. Singletary, and D. Li, “Effect of dietary intake of phytoestrogens on estrogen receptor status in premenopausal women with breast cancer,” Nutr Cancer, 51(2), 162–169, 2005.
  • [11] S. Mahabir, M.R. Spitz, S.L. Barrera, Y.Q. Dong, C. Eastham, and M.R. Forman, “Dietary boron and hormone replacement therapy as risk factors for lung cancer in women,” Am J Epidemiol, 167(9), 1070–1080, 2008.
  • [12] R. Scorei and R. Popa, “Boron-containing compounds as preventive and chemotherapeutic agents for cancer,” Anti-Cancer Agents Med Chem, 10(4), 346–351, 2010.
  • [13] G. Repetto, A. Del Peso, and J.L. Zurita, “Neutral red uptake assay for the estimation of cell viability/cytotoxicity,” Nat Protoc, 3(7), 1125-1131, 2008.
  • [14] F.K. Coban, S. Ince, I. Kucukkurt, H.H. Demirel, and O. Hazman, “Boron attenuates malathion-induced oxidative stress and acetylcholinesterase inhibition in rats,” Drug Chem Toxicol 38(4), 391–399, 2015.
  • [15] H. Zafar and S. Ali, “Boron inhibits the proliferating cell nuclear antigen index, molybdenum containing proteins and ameliorates oxidative stress in hepatocellular carcinoma,” Arch Biochem Biophys, 529(2), 66-74, 2013.
  • [16] I. Kucukkurt, S. Ince, H.H. Demirel, R. Turkmen, E. Akbel, and Y. Celik, “The effects of boron on arsenic-induced lipid peroxidation and antioxidant status in male and female rats,” J Biochem Mol Toxicol, 29(12), 564-571, 2015.
  • [17] S.S. Hakki, B.S. Bozkurt, and E.E. Hakki, “Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1),” J Trace Elem Med Biol, 24(4), 243-250, 2010.
  • [18] R.M. Nzietchueng, B. Dousset, P. Franck, M. Benderdou, P. Nabet, and K. Hess, “Mechanisms implicated in the effects of boron on wound healing,” J Trace Elem Med Biol, 16(4), 239-244, 2002.
  • [19] B.E. Tepedelen, E. Soya, and M. Korkmaz, “Boric acid reduces the formation of DNA double strand breaks and accelerates wound healing process,” Biol Trace Elem Res, 174(2), 309-318, 2016.
  • [20] B.E. Tepedelen, M. Korkmaz, E. Tatlisumak, E.T. Uluer, E. Olmez, and I. Degerli, “A study on the anticarcinogenic effects of calcium fructoborate,” Biol Trace Elem Res, 178(2), 210-217, 2017.
  • [21] W.T. Barranco, P.F. Hudak, and C.D. Eckhert, “Evaluation of ecological and in vitro effects of boron on prostate cancer risk (United States),” Cancer Causes Control, 18(1), 71–77, 2007.
  • [22] C. Hacioglu, F. Kar, S. Kacar, V. Sahinturk, and G. Kanbak, “High concentrations of boric acid trigger concentration-dependent oxidative stress, apoptotic pathways and morphological alterations in DU-145 human prostate cancer cell line,” Biol Trace Elem Res, 193(2), 400-409, 2020.
  • [23] B. Celik, E. Ersoz E, and M. Korkmaz, “Boraks pentahidrat’ın glioblastoma multiforme hücre hattındaki tedavi potansiyelinin araştırılması,” J Boron, 5(1), 56-61, 2020.
  • [24] A. Cigel, M.D. Bilgin, and R.O. Ek, “Evaluation of the anti-cancer and biological effects of boric acid on colon cancer cell line,” Meandros Med Dent J, 21(3), 238-244, 2020.
  • [25] A.S. Acerbo and L.M. Miller, “Assessment of the chemical changes induced in human melanoma cells by boric acid treatment using infrared imaging,” Analyst, 134(8), 1669-1674, 2009.
  • [26] A. Ugur, O. Ceylan, R. Boran, S. Ayrikcil, N. Sarac, and D. Yilmaz, “A new approach for prevention the oxidations and mutations: Zinc borate,” J Boron, 4(4), 196-202, 2019.
  • [27] H. Turkez, M.E. Arslan ME, O. Ozdemir, and O. Chikha, “Ameliorative effect of boric acid against nicotine-induced cytotoxicity on cultured human primary alveolar epithelial cells,” J Boron, 1(2), 104-109, 2016.

In vitro Evaluation of Cell Viability/Cytotoxicity Efficiency of Boric Acid in Fibroblast Cells

Year 2021, , 390 - 396, 25.11.2021
https://doi.org/10.29233/sdufeffd.915866

Abstract

Recent studies highlight the biological importance of boron compounds and their potential beneficial effects on human health. In addition, it is reported that high amounts of boron exposure may have adverse effects. There is information that boron may exert anti-cancer and anti-proliferative effects on tumor cells, but it is not yet known how these effects can affect normal cells. In our study, we aimed to evaluate the effect of boric acid (BA) on cell viability/cytotoxicity. For this purpose, L929 mouse fibroblast cells were treated with different concentrations of BA for 48 hours. Mitochondrial activity was determined by the 2H-Tetrazolium,2-(4,5-dimethyl-2-thiazolyl)-3,5-diphenyl-,bromide (MTT) method, and lysosomal activity was evaluated with the neutral red uptake (NR) method. A significant decrease was detected in 3.125-100 mM BA groups (p<0.05; p<0.001) with the MTT test and 25 mM-100 mM BA groups (p<0.01; p<0.001) with the NK test. Boric acid has been found to reduce cell viability by affecting mitochondrial and lysosomal activity, depending on the concentration in vitro. It has been thought that in vivo studies are needed to determine the effective treatment dose of boric acid.

References

  • [1] A. Tombuloglu, H. Copoglu, Y. Aydin-Son, and N.T. Guray, “In vitro effects of boric acid on human liver hepatoma cell line (HepG2) at the half-maximal inhibitory concentration,” J Trace Elem Med Biol, 62, 126573, 2020.
  • [2] F. Akbas and Z. Aydin, “Boric acid increases the expression levels of human anion exchanger genes SLC4A2 and SLC4A3,” Genet Mol Res, 11(2), 847-854, 2012.
  • [3] S. Yılmaz, A. Ustundag, O.C. Ulker, and Y. Duydu, “Protective effect of boric acid on oxidative DNA damage in Chinese hamster lung fibroblast V79 cell lines,” Cell J, 17(4), 748-754, 2016.
  • [4] S. Ince, I. Kucukkurt, I.H. Cigerci, A.F. Fatih, and A. Eryavuz, “The effects of dietary boric acid and borax supplementation on lipid peroxidation, antioxidant activity, and DNA damage in rats,” J Trace Elem Med Biol, 24(3), 161-164, 2010.
  • [5] F. Simsek, “An in vitro study in which new boron derivatives maybe an option for breast cancer treatment,” Eurasian J Med Oncol, 3(1), 22-27, 2019.
  • [6] P.M. Coates, M.R. Blackman, G.M. Cragg, M. Levine, J. Moss, and J.D. White, Encyclopedia of dietary supplements. Boca Raton: CRC Press, 2015, ch.8.
  • [7] M.C. Emanet, O. Sen, and M. Culha, “Hexagonal boron nitride nanoparticles for prostate cancer treatment,” ACS Appl Nano Mater, 3(3), 2364-2372, 2020.
  • [8] X. Li, X. Wang, J. Zhang, N. Hanagata, X. Wang, and Q. Weng, “Hollow boron nitride nanospheres as boron reservoir for prostate cancer treatment,” Nat Commun, 8,13936, 2017.
  • [9] Y. Cui, M.I. Winton, Z.F. Zhang, C. Rainey, J. Marshall, and J.B. De Kernion, “Dietary boron intake and prostate cancer risk,” Oncol Rep, 11(4), 887-892, 2004.
  • [10] M.S. Touillaud, P.C. Pillow, J. Jakovljevic, M.L. Bondy, S.E. Singletary, and D. Li, “Effect of dietary intake of phytoestrogens on estrogen receptor status in premenopausal women with breast cancer,” Nutr Cancer, 51(2), 162–169, 2005.
  • [11] S. Mahabir, M.R. Spitz, S.L. Barrera, Y.Q. Dong, C. Eastham, and M.R. Forman, “Dietary boron and hormone replacement therapy as risk factors for lung cancer in women,” Am J Epidemiol, 167(9), 1070–1080, 2008.
  • [12] R. Scorei and R. Popa, “Boron-containing compounds as preventive and chemotherapeutic agents for cancer,” Anti-Cancer Agents Med Chem, 10(4), 346–351, 2010.
  • [13] G. Repetto, A. Del Peso, and J.L. Zurita, “Neutral red uptake assay for the estimation of cell viability/cytotoxicity,” Nat Protoc, 3(7), 1125-1131, 2008.
  • [14] F.K. Coban, S. Ince, I. Kucukkurt, H.H. Demirel, and O. Hazman, “Boron attenuates malathion-induced oxidative stress and acetylcholinesterase inhibition in rats,” Drug Chem Toxicol 38(4), 391–399, 2015.
  • [15] H. Zafar and S. Ali, “Boron inhibits the proliferating cell nuclear antigen index, molybdenum containing proteins and ameliorates oxidative stress in hepatocellular carcinoma,” Arch Biochem Biophys, 529(2), 66-74, 2013.
  • [16] I. Kucukkurt, S. Ince, H.H. Demirel, R. Turkmen, E. Akbel, and Y. Celik, “The effects of boron on arsenic-induced lipid peroxidation and antioxidant status in male and female rats,” J Biochem Mol Toxicol, 29(12), 564-571, 2015.
  • [17] S.S. Hakki, B.S. Bozkurt, and E.E. Hakki, “Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1),” J Trace Elem Med Biol, 24(4), 243-250, 2010.
  • [18] R.M. Nzietchueng, B. Dousset, P. Franck, M. Benderdou, P. Nabet, and K. Hess, “Mechanisms implicated in the effects of boron on wound healing,” J Trace Elem Med Biol, 16(4), 239-244, 2002.
  • [19] B.E. Tepedelen, E. Soya, and M. Korkmaz, “Boric acid reduces the formation of DNA double strand breaks and accelerates wound healing process,” Biol Trace Elem Res, 174(2), 309-318, 2016.
  • [20] B.E. Tepedelen, M. Korkmaz, E. Tatlisumak, E.T. Uluer, E. Olmez, and I. Degerli, “A study on the anticarcinogenic effects of calcium fructoborate,” Biol Trace Elem Res, 178(2), 210-217, 2017.
  • [21] W.T. Barranco, P.F. Hudak, and C.D. Eckhert, “Evaluation of ecological and in vitro effects of boron on prostate cancer risk (United States),” Cancer Causes Control, 18(1), 71–77, 2007.
  • [22] C. Hacioglu, F. Kar, S. Kacar, V. Sahinturk, and G. Kanbak, “High concentrations of boric acid trigger concentration-dependent oxidative stress, apoptotic pathways and morphological alterations in DU-145 human prostate cancer cell line,” Biol Trace Elem Res, 193(2), 400-409, 2020.
  • [23] B. Celik, E. Ersoz E, and M. Korkmaz, “Boraks pentahidrat’ın glioblastoma multiforme hücre hattındaki tedavi potansiyelinin araştırılması,” J Boron, 5(1), 56-61, 2020.
  • [24] A. Cigel, M.D. Bilgin, and R.O. Ek, “Evaluation of the anti-cancer and biological effects of boric acid on colon cancer cell line,” Meandros Med Dent J, 21(3), 238-244, 2020.
  • [25] A.S. Acerbo and L.M. Miller, “Assessment of the chemical changes induced in human melanoma cells by boric acid treatment using infrared imaging,” Analyst, 134(8), 1669-1674, 2009.
  • [26] A. Ugur, O. Ceylan, R. Boran, S. Ayrikcil, N. Sarac, and D. Yilmaz, “A new approach for prevention the oxidations and mutations: Zinc borate,” J Boron, 4(4), 196-202, 2019.
  • [27] H. Turkez, M.E. Arslan ME, O. Ozdemir, and O. Chikha, “Ameliorative effect of boric acid against nicotine-induced cytotoxicity on cultured human primary alveolar epithelial cells,” J Boron, 1(2), 104-109, 2016.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Makaleler
Authors

Dilek Düzgün Ergün 0000-0002-6245-6631

Ahu Soyocak 0000-0002-9678-5652

Publication Date November 25, 2021
Published in Issue Year 2021

Cite

IEEE D. Düzgün Ergün and A. Soyocak, “Borik Asidin Fibroblast Hücrelerinde Hücre Canlılığı/Sitotoksisite Etkinliğinin in vitro Olarak Değerlendirilmesi”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 16, no. 2, pp. 390–396, 2021, doi: 10.29233/sdufeffd.915866.