Research Article
BibTex RIS Cite

Monte Carlo Simülasyonu Kullanılarak B4C, B2O3, Sm2O3 ve Gd2O3 Katkılı Polimer Matrisli Kompozitlerin Termal ve Hızlı Nötron Zırhlama Özelliklerinin İncelenmesi

Year 2021, , 490 - 499, 25.11.2021
https://doi.org/10.29233/sdufeffd.933338

Abstract

Bu çalışmada, B4C, B2O3, Sm2O3 ve Gd2O3 katkılı (%5, %10, %15, %20 ve %25 ağırlık oranlarında) parafin, polikarbonat ve polyester matrisli polimerlerin termal (2.53*10-8 MeV) ve hızlı (2 MeV) nötron toplam makroskopik tesir kesitleri Monte Carlo simülasyonu kullanılarak hesaplanmıştır. Ayrıca, hızlı nötronların makroskopik etkin ayırma tesir kesiti (∑_R), polimerlerdeki ve katkı maddelerindeki elementlerin kütlesel ayırma tesir kesiti değerleri (〖 ∑〗_R⁄ρ) kullanılarak teorik olarak da hesaplanmıştır. Elde edilen sonuçlar, en yüksek termal nötron toplam makroskopik tesir kesiti Gd2O3 katkılı polikarbonat ve en yüksek hızlı nötron toplam makroskopik tesir kesiti Sm2O3 katkılı parafin ile elde edildiğini göstermiştir. Bunun yanında parafinin, tüm katkı maddeleri için en yüksek hızlı nötron toplam makroskopik kesitine sahip olduğu görülmüştür. Bu çalışmanın sonuçları, B4C, B2O3, Sm2O3 ve Gd2O3 katkılı parafin, polikarbonat ve polyester matrisli polimerlerin termal ve hızlı nötronlara karşı zırhlama özelliklerinin iyi bir şekilde anlaşılmasını sağlamıştır.

Supporting Institution

Zonguldak Bülent Ecevit University

Project Number

2020-73338635-01

References

  • [1] S. Chandra, T. Ahmad, R. F. Barth, and G. W. Kabalka, “Quantitative evaluation of boron neutron capture therapy (BNCT) drugs for boron delivery and retention at subcellular-scale resolution in human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS),” J. Microsc., 254 (3), 146–156, 2014, doi: 10.1111/jmi.12126.
  • [2] D. Kramer et al., “In situ diagnostic of two-phase flow phenomena in polymer electrolyte fuel cells by neutron imaging: Part A. Experimental, data treatment, and quantification,” Electrochim. Acta, 50 (13), 2603–2614, 2005, doi: 10.1016/j.electacta.2004.11.005.
  • [3] J. Zhang et al., “In situ diagnostic of two-phase flow phenomena in polymer electrolyte fuel cells by neutron imaging: Part B. Material variations,” Electrochim. Acta, 51 (13), 2715–2727, Mar. 2006, doi: 10.1016/j.electacta.2005.08.010.
  • [4] A. Ittipongse and R. Fungklin, “Neutron activation for analyzing elements in material,” in Key Engineering Materials, 675–676, 700–703, 2016, doi: 10.4028/www.scientific.net/KEM.675-676.700.
  • [5] J. E. Martin, Physics for Radiation Protection, Third Edition. Wiley-VCH, 2013.
  • [6] ICRP, “Annals of the International Commission on Radiological Protection, ICRP Publication 103,” Ann. ICRP, 37, 3–4, p. 332, 2007.
  • [7] O. Gencel, A. Bozkurt, E. Kam, and T. Korkut, “Determination and calculation of gamma and neutron shielding characteristics of concretes containing different hematite proportions,” Ann. Nucl. Energy, 38 (12), 2719–2723, 2011, doi: 10.1016/j.anucene.2011.08.010.
  • [8] A. Akkas, A. B. Tugrul, B. Buyuk, A. O. Addemir, M. Marsoglu, and B. Agacan, “Shielding effect of boron carbide aluminium metal matrix composite against gamma and neutron radiation,” Acta Phys. Pol. A, 128 (2), 176–179, 2015, doi: 10.12693/APhysPolA.128.B-176.
  • [9] S. D. Kaloshkin, V. V. Tcherdyntsev, M. V. Gorshenkov, V. N. Gulbin, and S. A. Kuznetsov, “Radiation-protective polymer-matrix nanostructured composites,” J. Alloys Compd., 536 (SUPPL.1), S522–S526, 2012, doi: 10.1016/j.jallcom.2012.01.061.
  • [10] A. B. Chilton, J. K. Shultis, and R. E. Faw, Principles of Radiation Shielding. Prentice-Hall, 1984.
  • [11] C. V. More, Z. Alsayed, M. S. Badawi, A. A. Thabet, and P. P. Pawar, “Polymeric composite materials for radiation shielding: a review,” Environ. Chem. Lett., 19, 2057-2090, 2021.
  • [12] M. R. Kaçal, F. Akman, and M. I. Sayyed, “Evaluation of gamma-ray and neutron attenuation properties of some polymers,” Nucl. Eng. Technol., 51 (3), 818–824, 2019, doi: 10.1016/j.net.2018.11.011.
  • [13] B. Körpınar, B. Canbaz Öztürk, N. F. Çam, and H. Akat, “Radiation shielding properties of Poly(hydroxylethyl methacrylate)/Tungsten(VI) oxide composites,” Mater. Chem. Phys., 239 (January), 2020, doi: 10.1016/j.matchemphys.2019.121986.
  • [14] G. İrim et al., “Physical, mechanical and neutron shielding properties of h-BN/Gd2O3/HDPE ternary nanocomposites,” Radiat. Phys. Chem., 144 (March), 434–443, 2018, doi: 10.1016/j.radphyschem.2017.10.007.
  • [15] P. Wang, X. Tang, H. Chai, D. Chen, and Y. Qiu, “Design, fabrication, and properties of a continuous carbon-fiber reinforced Sm2O3/polyimide gamma ray/neutron shielding material,” Fusion Eng. Des., 101, 218–225, 2015, doi: 10.1016/j.fusengdes.2015.09.007.
  • [16] D. Toyen and K. Saenboonruang, “Development of paraffin and paraffin/bitumen composites with additions of B2O3 for thermal neutron shielding applications,” J. Nucl. Sci. Technol., 54 (8), 871–877, 2017, doi: 10.1080/00223131.2017.1323688.
  • [17] N. R. Abd Elwahab, N. Helal, T. Mohamed, F. Shahin, and F. M. Ali, “New shielding composite paste for mixed fields of fast neutrons and gamma rays,” Mater. Chem. Phys., 233 (May), 249–253, 2019, doi: 10.1016/j.matchemphys.2019.05.059.
  • [18] Z. Uddin, T. Yasin, M. Shafiq, A. Raza, and A. Zahur, “On the physical, chemical, and neutron shielding properties of polyethylene/boron carbide composites,” Radiat. Phys. Chem., 166 (January), 108450, 2020, doi: 10.1016/j.radphyschem.2019.108450.
  • [19] S. Woosley, N. Abuali Galehdari, A. Kelkar, and S. Aravamudhan, “Fused deposition modeling 3D printing of boron nitride composites for neutron radiation shielding,” J. Mater. Res., 33 (22), 3657–3664, 2018, doi: 10.1557/jmr.2018.316.
  • [20] Z. Soltani, A. Beigzadeh, F. Ziaie, and E. Asadi, “Effect of particle size and percentages of boron carbide on the thermal neutron radiation shielding properties of HDPE/B4C composite: Experimental and simulation studies,” Radiat. Phys. Chem., 127, 182–187, 2016, doi: 10.1016/j.radphyschem.2016.06.027.
  • [21] A. Mesbahi, K. Verdipoor, F. Zolfagharpour, and A. Alemi, “Investigation of fast neutron shielding properties of new polyurethane-based composites loaded with B4C, BeO, WO3, ZnO, and Gd2O3 micro-and nanoparticles,” Polish J. Med. Phys. Eng., 25, (4), 211–219, Dec. 2019, doi: 10.2478/pjmpe-2019-0028.
  • [22] R. Biswas, H. Sahadath, A. S. Mollah, and M. F. Huq, “Calculation of gamma-ray attenuation parameters for locally developed shielding material: Polyboron,” J. Radiat. Res. Appl. Sci., 9 (1), 26–34, 2016, doi: 10.1016/j.jrras.2015.08.005.
  • [23] R. G. Williams, C. J. Gesh, and R. T. Pagh, “Compendium of Material Composition Data for Radiation Transport Modeling,” Richland, WA, Oct. 2006. doi: 10.2172/902408.
  • [24] F. Özkalaycı, M. R. Kaçal, O. Agar, H. Polat, A. Sharma, and F. Akman, “Lead(II) chloride effects on nuclear shielding capabilities of polymer composites,” J. Phys. Chem. Solids, 145 (January),n 109543, 2020, doi: 10.1016/j.jpcs.2020.109543.
  • [25] M. C. Team, “MCNP-A General Monte Carlo N-Particle Transport Code, Version 5 Volume I: Overview and Theory X-5 Monte Carlo Team,” 2003.
  • [26] M. I. Sayyed, K. A. Mahmoud, S. Islam, O. L. Tashlykov, E. Lacomme, and K. M. Kaky, “Application of the MCNP 5 code to simulate the shielding features of concrete samples with different aggregates,” Radiat. Phys. Chem., 174 (September), 108925, 2020, doi: 10.1016/j.radphyschem.2020.108925.
  • [27] R. El-Mallawany, M. I. Sayyed, M. G. Dong, and Y. S. Rammah, “Simulation of radiation shielding properties of glasses contain PbO,” Radiat. Phys. Chem., 151, 239–252, Oct. 2018, doi: 10.1016/j.radphyschem.2018.06.035.
  • [28] J. J. Park, S. M. Hong, M. K. Lee, C. K. Rhee, and W. H. Rhee, “Enhancement in the microstructure and neutron shielding efficiency of sandwich type of 6061Al-B 4 C composite material via hot isostatic pressing,” Nucl. Eng. Des., 282, 1–7, 2015, doi: 10.1016/j.nucengdes.2014.10.020.
  • [29] A. T. Boothroyd, Principles of Neutron Scattering from Condensed Matter. Oxford University Press, 2020.
  • [30] M. F. Kaplan, Concrete radiation shielding : nuclear physics, concrete properties, design and construction. Longman Scientific & Technical, 1989.
  • [31] A. E. Profio, Radiation Shielding and Dosimetry. Wiley, 1979.
  • [32] R. Adeli, S. Pezhman, and S. Javad, “Neutron irradiation tests on B4C/epoxy composite for neutron shielding application and the parameters assay,” Radiat. Phys. Chem., 127, 140–146, 2016, doi: 10.1016/j.radphyschem.2016.06.026.
  • [33] B. Aygün and G. Budak, “A new neutron absorber material : Oil loaded paraffin wax,” Nucl. Sci. Technol., 33–39, 2012.
  • [34] T. Tuna, A. A. Eker, and E. Kam, “Neutron shielding characteristics of polymer composites with boron carbide,” J. Korean Phys. Soc., 78 (7), 566–573, 2021, doi: 10.1007/s40042-021-00089-z.
  • [35] I. I. Bashter, “Calculation of radiation attenuation coefficients for shielding concretes,” Ann. Nucl. Energy, 24, (17), 1389–1401, Nov. 1997, doi: 10.1016/S0306-4549(97)00003-0.
  • [36] “Nuclear Data Center at KAERI.” http://atom.kaeri.re.kr/ (accessed Apr. 18, 2021).
  • [37] V. F. Sears, “Neutron scattering lengths and cross sections,” Neutron News, 3 (3), 26–37, 1992, doi: 10.1080/10448639208218770.

Investigating Thermal and Fast Neutron Shielding Properties of B4C, B2O3, Sm2O3, and Gd2O3 doped Polymer Matrix Composites using Monte Carlo Simulations

Year 2021, , 490 - 499, 25.11.2021
https://doi.org/10.29233/sdufeffd.933338

Abstract

In this study, thermal (2.53*10-8 MeV) and fast (2 MeV) neutron total macroscopic cross-sections of paraffin, polycarbonate, and polyester matrix polymers doped with B4C, B2O3, Sm2O3, and Gd2O3 (at weight percentages of 5%, 10%, 15%, 20%, and 25%) were computed by using Monte Carlo simulations. Additionally, the macroscopic effective removal cross-section ) of fast neutrons was theoretically computed based on the mass removal cross-section values ) for various elements in polymers and additives. The obtained results show that the highest thermal neutron total macroscopic cross-section was obtained in polycarbonate doped with Gd2O3, and the highest fast neutron total macroscopic cross-section was observed in paraffin doped with Sm2O3. Besides, the paraffin provided the highest fast neutron total macroscopic cross-section for all additives. The results of this study provide a good understanding of shielding properties of paraffin, polycarbonate, and polyester matrix polymers doped with B4C, B2O3, Sm2O3, and Gd2O3 against thermal and fast neutrons.

Project Number

2020-73338635-01

References

  • [1] S. Chandra, T. Ahmad, R. F. Barth, and G. W. Kabalka, “Quantitative evaluation of boron neutron capture therapy (BNCT) drugs for boron delivery and retention at subcellular-scale resolution in human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS),” J. Microsc., 254 (3), 146–156, 2014, doi: 10.1111/jmi.12126.
  • [2] D. Kramer et al., “In situ diagnostic of two-phase flow phenomena in polymer electrolyte fuel cells by neutron imaging: Part A. Experimental, data treatment, and quantification,” Electrochim. Acta, 50 (13), 2603–2614, 2005, doi: 10.1016/j.electacta.2004.11.005.
  • [3] J. Zhang et al., “In situ diagnostic of two-phase flow phenomena in polymer electrolyte fuel cells by neutron imaging: Part B. Material variations,” Electrochim. Acta, 51 (13), 2715–2727, Mar. 2006, doi: 10.1016/j.electacta.2005.08.010.
  • [4] A. Ittipongse and R. Fungklin, “Neutron activation for analyzing elements in material,” in Key Engineering Materials, 675–676, 700–703, 2016, doi: 10.4028/www.scientific.net/KEM.675-676.700.
  • [5] J. E. Martin, Physics for Radiation Protection, Third Edition. Wiley-VCH, 2013.
  • [6] ICRP, “Annals of the International Commission on Radiological Protection, ICRP Publication 103,” Ann. ICRP, 37, 3–4, p. 332, 2007.
  • [7] O. Gencel, A. Bozkurt, E. Kam, and T. Korkut, “Determination and calculation of gamma and neutron shielding characteristics of concretes containing different hematite proportions,” Ann. Nucl. Energy, 38 (12), 2719–2723, 2011, doi: 10.1016/j.anucene.2011.08.010.
  • [8] A. Akkas, A. B. Tugrul, B. Buyuk, A. O. Addemir, M. Marsoglu, and B. Agacan, “Shielding effect of boron carbide aluminium metal matrix composite against gamma and neutron radiation,” Acta Phys. Pol. A, 128 (2), 176–179, 2015, doi: 10.12693/APhysPolA.128.B-176.
  • [9] S. D. Kaloshkin, V. V. Tcherdyntsev, M. V. Gorshenkov, V. N. Gulbin, and S. A. Kuznetsov, “Radiation-protective polymer-matrix nanostructured composites,” J. Alloys Compd., 536 (SUPPL.1), S522–S526, 2012, doi: 10.1016/j.jallcom.2012.01.061.
  • [10] A. B. Chilton, J. K. Shultis, and R. E. Faw, Principles of Radiation Shielding. Prentice-Hall, 1984.
  • [11] C. V. More, Z. Alsayed, M. S. Badawi, A. A. Thabet, and P. P. Pawar, “Polymeric composite materials for radiation shielding: a review,” Environ. Chem. Lett., 19, 2057-2090, 2021.
  • [12] M. R. Kaçal, F. Akman, and M. I. Sayyed, “Evaluation of gamma-ray and neutron attenuation properties of some polymers,” Nucl. Eng. Technol., 51 (3), 818–824, 2019, doi: 10.1016/j.net.2018.11.011.
  • [13] B. Körpınar, B. Canbaz Öztürk, N. F. Çam, and H. Akat, “Radiation shielding properties of Poly(hydroxylethyl methacrylate)/Tungsten(VI) oxide composites,” Mater. Chem. Phys., 239 (January), 2020, doi: 10.1016/j.matchemphys.2019.121986.
  • [14] G. İrim et al., “Physical, mechanical and neutron shielding properties of h-BN/Gd2O3/HDPE ternary nanocomposites,” Radiat. Phys. Chem., 144 (March), 434–443, 2018, doi: 10.1016/j.radphyschem.2017.10.007.
  • [15] P. Wang, X. Tang, H. Chai, D. Chen, and Y. Qiu, “Design, fabrication, and properties of a continuous carbon-fiber reinforced Sm2O3/polyimide gamma ray/neutron shielding material,” Fusion Eng. Des., 101, 218–225, 2015, doi: 10.1016/j.fusengdes.2015.09.007.
  • [16] D. Toyen and K. Saenboonruang, “Development of paraffin and paraffin/bitumen composites with additions of B2O3 for thermal neutron shielding applications,” J. Nucl. Sci. Technol., 54 (8), 871–877, 2017, doi: 10.1080/00223131.2017.1323688.
  • [17] N. R. Abd Elwahab, N. Helal, T. Mohamed, F. Shahin, and F. M. Ali, “New shielding composite paste for mixed fields of fast neutrons and gamma rays,” Mater. Chem. Phys., 233 (May), 249–253, 2019, doi: 10.1016/j.matchemphys.2019.05.059.
  • [18] Z. Uddin, T. Yasin, M. Shafiq, A. Raza, and A. Zahur, “On the physical, chemical, and neutron shielding properties of polyethylene/boron carbide composites,” Radiat. Phys. Chem., 166 (January), 108450, 2020, doi: 10.1016/j.radphyschem.2019.108450.
  • [19] S. Woosley, N. Abuali Galehdari, A. Kelkar, and S. Aravamudhan, “Fused deposition modeling 3D printing of boron nitride composites for neutron radiation shielding,” J. Mater. Res., 33 (22), 3657–3664, 2018, doi: 10.1557/jmr.2018.316.
  • [20] Z. Soltani, A. Beigzadeh, F. Ziaie, and E. Asadi, “Effect of particle size and percentages of boron carbide on the thermal neutron radiation shielding properties of HDPE/B4C composite: Experimental and simulation studies,” Radiat. Phys. Chem., 127, 182–187, 2016, doi: 10.1016/j.radphyschem.2016.06.027.
  • [21] A. Mesbahi, K. Verdipoor, F. Zolfagharpour, and A. Alemi, “Investigation of fast neutron shielding properties of new polyurethane-based composites loaded with B4C, BeO, WO3, ZnO, and Gd2O3 micro-and nanoparticles,” Polish J. Med. Phys. Eng., 25, (4), 211–219, Dec. 2019, doi: 10.2478/pjmpe-2019-0028.
  • [22] R. Biswas, H. Sahadath, A. S. Mollah, and M. F. Huq, “Calculation of gamma-ray attenuation parameters for locally developed shielding material: Polyboron,” J. Radiat. Res. Appl. Sci., 9 (1), 26–34, 2016, doi: 10.1016/j.jrras.2015.08.005.
  • [23] R. G. Williams, C. J. Gesh, and R. T. Pagh, “Compendium of Material Composition Data for Radiation Transport Modeling,” Richland, WA, Oct. 2006. doi: 10.2172/902408.
  • [24] F. Özkalaycı, M. R. Kaçal, O. Agar, H. Polat, A. Sharma, and F. Akman, “Lead(II) chloride effects on nuclear shielding capabilities of polymer composites,” J. Phys. Chem. Solids, 145 (January),n 109543, 2020, doi: 10.1016/j.jpcs.2020.109543.
  • [25] M. C. Team, “MCNP-A General Monte Carlo N-Particle Transport Code, Version 5 Volume I: Overview and Theory X-5 Monte Carlo Team,” 2003.
  • [26] M. I. Sayyed, K. A. Mahmoud, S. Islam, O. L. Tashlykov, E. Lacomme, and K. M. Kaky, “Application of the MCNP 5 code to simulate the shielding features of concrete samples with different aggregates,” Radiat. Phys. Chem., 174 (September), 108925, 2020, doi: 10.1016/j.radphyschem.2020.108925.
  • [27] R. El-Mallawany, M. I. Sayyed, M. G. Dong, and Y. S. Rammah, “Simulation of radiation shielding properties of glasses contain PbO,” Radiat. Phys. Chem., 151, 239–252, Oct. 2018, doi: 10.1016/j.radphyschem.2018.06.035.
  • [28] J. J. Park, S. M. Hong, M. K. Lee, C. K. Rhee, and W. H. Rhee, “Enhancement in the microstructure and neutron shielding efficiency of sandwich type of 6061Al-B 4 C composite material via hot isostatic pressing,” Nucl. Eng. Des., 282, 1–7, 2015, doi: 10.1016/j.nucengdes.2014.10.020.
  • [29] A. T. Boothroyd, Principles of Neutron Scattering from Condensed Matter. Oxford University Press, 2020.
  • [30] M. F. Kaplan, Concrete radiation shielding : nuclear physics, concrete properties, design and construction. Longman Scientific & Technical, 1989.
  • [31] A. E. Profio, Radiation Shielding and Dosimetry. Wiley, 1979.
  • [32] R. Adeli, S. Pezhman, and S. Javad, “Neutron irradiation tests on B4C/epoxy composite for neutron shielding application and the parameters assay,” Radiat. Phys. Chem., 127, 140–146, 2016, doi: 10.1016/j.radphyschem.2016.06.026.
  • [33] B. Aygün and G. Budak, “A new neutron absorber material : Oil loaded paraffin wax,” Nucl. Sci. Technol., 33–39, 2012.
  • [34] T. Tuna, A. A. Eker, and E. Kam, “Neutron shielding characteristics of polymer composites with boron carbide,” J. Korean Phys. Soc., 78 (7), 566–573, 2021, doi: 10.1007/s40042-021-00089-z.
  • [35] I. I. Bashter, “Calculation of radiation attenuation coefficients for shielding concretes,” Ann. Nucl. Energy, 24, (17), 1389–1401, Nov. 1997, doi: 10.1016/S0306-4549(97)00003-0.
  • [36] “Nuclear Data Center at KAERI.” http://atom.kaeri.re.kr/ (accessed Apr. 18, 2021).
  • [37] V. F. Sears, “Neutron scattering lengths and cross sections,” Neutron News, 3 (3), 26–37, 1992, doi: 10.1080/10448639208218770.
There are 37 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Yasin Gaylan 0000-0003-1354-7593

Ahmet Bozkurt 0000-0002-3163-0131

Barış Avar 0000-0002-6234-5448

Project Number 2020-73338635-01
Publication Date November 25, 2021
Published in Issue Year 2021

Cite

IEEE Y. Gaylan, A. Bozkurt, and B. Avar, “Investigating Thermal and Fast Neutron Shielding Properties of B4C, B2O3, Sm2O3, and Gd2O3 doped Polymer Matrix Composites using Monte Carlo Simulations”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 16, no. 2, pp. 490–499, 2021, doi: 10.29233/sdufeffd.933338.

Cited By