Calculation of Mass Attenuation Coefficients for Pedicle Screw by Theoretical and Monte Carlo Simulation Methods
Year 2021,
, 533 - 543, 25.11.2021
Yiğit Ali Üncü
,
Onur Karaman
,
Hakan Çakın
,
Hasan Özdoğan
Abstract
Spine fixation is required in cases such as congenital spinal curvatures, vertebral fractures, sagittal collapse over time, painful kyphosis, and bone load due to tumors. Although there are many methods in the literature, the most commonly used spine fixation method is the fixation with pedicle screws. In these cases, it is known that pedicle screws are used frequently in the body. In this study, how the radiological exposure of the pedicle screws in the vertebral column that dose was evaluated by simulation methods. First, the elemental analysis of the pedicle screw was analyzed via Scanning Electron Microscopy (SEM) equipped with the Energy Dispersive X-ray Spectroscopy (EDS). Then, the elemental compositions of the pedicle screw obtained were used for simulation codes. subsequently, the half-value thickness and the attenuation coefficient calculations were conducted for the pedicle screw and vertebral column. Both XCOM software and MCNP (Monte Carlo N-Particle) simulation code were used to obtain photon interaction parameters within the energy range of 60-250 keV.
Thanks
The authors very much appreciate the support to the density value of pedicle screw by Kayahan Medical, Turkey for providing Orion brand pedicle screw.
References
- [1] R. Skinner, J. Maybee, E. Transfeldt, R. Venter, W. Chalmers, “Experimental pullout testing and comparison of variables in transpedicular screw fixation. A biomechanical study,” Spine., 15, 195-201, 1990.
- [2] H. H. Boucher, “A method of spinal fusion,” J. Bone Jt. Surg., 41, 248-259, 1959.
- [3] B. S. Myers, Jr.P.J. Belmont, W. J. Richardson, R. Y. James, K. D. Harper, and R. W. Nightingale, “The role of imaging and in situ biomechanical testing in assessing pedicle screw pull-out strength,” Spine., 21, 1962-1968, 1996.
- [4] N. A. Ebraheim, R. Xu, M. Darwich, and R. A. Yeasting, “Anatomic relations between the lumbar pedicle and the adjacent neural structures,” Spine., 22, 2338-2341, 1997.
- [5] R. B. Ashman, R. D. Galpin, J. D. Corin, and C. E. Johnston, “2d. Biomechanical analysis of pedicle screw instrumentation systems in a corpectomy model,” Spine., 14, 1398-405, 1989.
- [6] M. H. Krag, B. D. Beynnon, M. H. Pope, and T. A. DeCoster, “Depth of insertion of transpedicular vertebral screws into human vertebrae: effect upon screw-vertebra interface strength,” Clin. Spine Surg., 1, 287-294, 1989.
- [7] A. D. Steffee, R. S. Biscup, and D. J. Sitkowski, “Segmental spine plates with pedicle screw fixation. A new internal fixation device for disorders of the lumbar and thoracolumbar spine,” Clin. Orthop. Relat. Res., 203, 45-53, 1986.
- [8] G. Lynn, D. P. Mukherjee, R. N. Kruse, K. K. Sadasivan, and J. A. Albright, “Mechanical stability of thoracolumbar pedicle screw fixation. The effect of crosslinks,” Spine., 22, 1568-73, 1997.
- [9] J. Charnley, “Anchorage of the femoral head prosthesis to the shaft of the femur,” J. Bone Jt. Surg., 42, 28-30, 1960.
- [10] F. Mahyudin, L. Widhiyanto, and H. Hermawan, “Biomaterials in orthopaedics.,” Ed. Mahyudin F, Hermawan H. Biomaterials and Medical Devices A Perspective from an Emerging Country, Cambridge, UK, Springer. 2016, pp. 161-181.
- [11] F. Á. Rodríguez-González, “Introduction to biomaterials in orthopaedic surgery,” Ed. Rodriguez-Gonzalez FÁ, Biomaterials in Orthopaedic Surgery. Ohio, USA, ASM International. 2009, pp. 1-10.
- [12] B. Patel, G. Favaro, F. Inam, M. J. Reece, A. Angadji, W. Bonfield, W. J. Huang, and M. Edirisinghe, “Cobalt-based orthopaedic alloys: Relationship between forming route, microstructure and tribological performance,” Mater. Sci. Eng. C., 32, 1222-1229, 2012.
- [13] C. Zhao, J. Zhou, Q. Mei, and F. Ren, “Microstructure and dry sliding wear behavior of ultrafine-grained Co-30 at% Cr alloy at room and elevated temperatures,” J. Alloys Compd., 770, 276-284, 2019.
- [14] Y. Okazaki, E. Gotoh, “Comparison of metal release from various metallic biomaterials in vitro,” Biomaterials., 26(1), 11-21, 2005.
- [15] K. L. Wapner, “Implications of metallic corrosion in total knee arthroplasty,” Clin. Orthop. Relat. Res., 271, 12-20, 1991.
- [16] D. B. McGregor, R. A. Baan, C. Partensky, J. M. Rice, and J. D. Wilbourn, “Evaluation of the carcinogenic risks to humans associated with surgical implants and other foreign bodies - A report of an IARC Monographs Programme,” Meeting. Eur. J. Cancer, 36, 307-313, 2000.
- [17] S. Bahl, S. Das, S. Suwas, and S. K. Chatterjee, “Engineering the next-generation tin containing β titanium alloys with high strength and low modulus for orthopedic applications,” J. Mech. Behav. Biomed. Mater., 78, 124-133, 2018.
- [18] M. Niinomi, M. Nakai, and J. Hieda, “Development of new metallic alloys for biomedical applications,”Acta. Biomater., 8, 3888-3903, 2012.
- [19] R. Zhou, D. Wei, J. Cao, W. Feng, S. Cheng, Q. Du, B. Li, Y. Wang, D. Jia, and Y. Zhou, “Metallic implant biomaterials,” ACS Appl. Mater. Interfaces. 7, 8932-8941, 2015.
- [20] O. Kovalchuk, A. Ponton, J. Filkowski, and I. Kovalchuk, “Dissimilar genome response to acute and chronic low-dose radiation in male and female mice,” Mutat. Res-Fund Mol. M., 550, 59-72, 2004.
- [21] C. M. Davisson and R. D. Evans, “Gamma-ray absorption coefficients,” Rev. Mod. Phys., 24, 79, 1952.
- [22] D. M. Taylor, “The radiopharmaceutical and its interaction with the patient,” In: Mores BM, Parker RP, Pullan BR, Ed. Physicalaspect medical imaging. New York: Wiley, 1981.
- [23] I.I. Bashter, “Calculation of radiation attenuation coefficients for shielding concretes,” Ann. Nucl. Energy, 24, 1389-1401, 1997.
- [24] M. A. Abdel-Rahman, E. A. Badawi, Y. L. Abdel-Hady, and N. Kamel, “Effect of sample thickness on the measured mass attenuation coefficients of some compounds and elements for 59.54, 661.6 and 1332:5 keV g-rays,” Nucl. Instrum. Methods Phys. Res. A: Accelerators, Spectrometers, Detectors and Associated Equipment, 447, 432-436, 2000.
- [25] K. Singh, G. Kaur, G. K. Sandhu, and B. S Lark, “Interaction of photons with some solutions,” Radiat. Phys. Chem., 61, 537-540, 2001.
- [26] B.Z. Shakhreet, C.S. Chong, T. Bandyopadhyay, D.A. Bradley, A.A. Tajuddin, A. Shukri, “Measurement of photon mass-energy absorption coefficients of paraffin wax and gypsum at 662 keV,” Radiat. Phys. Chem., 68, 757-764, 2003.
- [27] J. E. Rossen and K. L. Scrivener, “Optimization of SEM-EDS to determine the C–A–S–H composition in matured cement paste samples,” Mater. Charact., 123, 294-306, 2017.
- [28] K. Rokosz, T. Hryniewicz, S. Raaen, P. Chapon, and Ł. Dudek, “GDOES, XPS, and SEM with EDS analysis of porous coatings obtained on titanium after plasma electrolytic oxidation,” Surf. Interface Anal., 49, 303-315, 2017.
- [29] H. Yücel, E. Güllüoglu, S. Çubukçu, Y. A Üncü, “Measurement of the attenuation properties of the protective materials used as a thyroid guard and apron for personnel protection against diagnostic medical x-rays,” J. Phys. Sci., 27, 111, 2016.
- [30] S. Y. Darki and S. Keshavarz, “Studies on mass attenuation coefficients for some body tissues with different medical sources and their validation using Monte Carlo codes,” Nucl. Sci. Tech., 31(12), 1-15, 2020.
- [31] H. Özdoğan, “Theoretical calculations of production cross–sections for the 201Pb, 111In 18F and 11C radioisotopes at proton induced reactions,” Appl. Radiat Isot., 143, 1-5, 2019.
- [32] M. Şekerci, H. Özdoğan, and A. Kaplan, “Investigation on the different production routes of 67Ga radioisotope by using different level density models,” Mosc. Univ. Phys. Bull., 74, 277-281, 2019.
- [33] M. Şekerci, H. Özdoğan, and A. Kaplan, “An investigation of effects of level density models and gamma ray strength functions on cross-section calculations for the production of 90Y, 153Sm, 169Er, 177Lu and 186Re therapeutic radioisotopes via (n,γ) reactions.,” Radiochim. Acta., 108, 11-17, 2020.
- [34] H. Özdoğan, M. Şekerci, and A. Kaplan, “A new developed semi empirical formula for the α p reaction cross section at 19 1 MeV,” Mod. Phys. Lett. A, 34, 1950044, 2019.
- [35] A. Kaplan, M. Şekerci, V. Çapalı, and H. Özdoğan, “Photon induced reaction cross section calculations of several structural fusion materials,” J. Fusion Energy, 36, 213-217, 2017.
- [36] A. Kaplan, M. Şekerci, H. Özdoğan, and B. Demir, “A study on the calculations of cross–sections for 66,67gA and 75sE radionuclides production reactions via 3He particles,” Eskişehir Technical University Journal of Science and Technology A-Applied Sciences and Engineering, 21, 554-56, 2020.
- [37] H. Özdoğan, M. Şekerci, and A. Kaplan, “Investigation of gamma strength functions and level density models effects on photon induced reaction cross section calculations for the fusion structural materials 46 50Ti 51V 58Ni and 63Cu,” Appl. Radiat. Isot., 143, 6-10, 2019.
- [38] M. Şekerci, H. Özdoğan, and A. Kaplan, “Charged Particle Penetration Distance and Mass Stopping Power Calculations on Some Nuclear Reactor Control Rod Materials,” Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12, 1103-1115, 2019.
- [39] H. Özdoğan, V. Çapalı, and A. Kaplan, “Reaction cross section stopping power and penetrating distance calculations for the structural fusion material 54Fe in different reactions,” J. Fusion Energy, 34, 379-385, 2015.
- [40] M.I. Sayyed, A. Kumar, H. O Tekin, R. Kaur, M. Singh, O Agar, and M. U. Khandaker, “Evaluation of gamma ray and neutron shielding features of heavy metals doped Bi2O3 BaO Na2O MgO B2O3 glass systems,” Prog. Nucl. Energy, 118, 103118, 2020.
- [41] A. Kumar, D. K. Gaikwad, S. S. Obaid, H. O. Tekin, O. Agar, and M. I. Sayyed, “Experimental studies and Monte Carlo simulations on gamma ray shielding competence of 30 x PbO 10WO3 10Na2O 10MgO 40 x B2O3 glasses,” Prog. Nucl. Energy, 119, 103047, 2020.
- [42] M. I Sayyed, O Agar, A. Kumar, H. O. Tekin, D. K. Gaikwad, and S. S Obaid, “Evaluation of gamma ray and neutron shielding features of heavy metals doped Bi2O3 BaO Na2O MgO B2O3 glass systems,” Chem. Phys., 529, 110571, 2020.
- [43] O. Kilicoglu, E. E. Altunsoy, O. Agar, M. Kamislioglu, M. I. Sayyed, H. O. Tekin, and N. Tarhan, “Synergistic effect of La2O3 on mass stopping power MSP projected range PR and nuclear radiation shielding abilities of silicate glasses,” Results Phys., 14, 102424, 2019.
- [44] A. Sharma, M. I. Sayyed, O. Agar, and H. O. Tekin, “Simulation of shielding parameters for TeO2 WO3 GeO2 glasses using FLUKA code,” Results Phys., 13, 102199, 2019.
- [45] M. Bencheikh, A. Maghnouj, and J. Tajmouati, “Photon beam softening coefficient determination with slab thickness in small filed size: Monte Carlo study,” Phys. Part. Nucl. Lett., 14, 963-970, 2017.
- [46] O. Karaman, H. Özdogan, Y. A. Üncü, C. Karaman, and A. G. Tanır, “Investigation of the effects of different composite materials on neutron contamination caused by medical LINAC,” Kerntechnik, 85, 401-407, 2020.
- [47] A. H. Taqi and H. J. Khalil, “Experimental and theoretical investigation of gamma attenuation of building materials,” J. Phys. G., 7, 6-13, 2017.
- [48] H. Zhou, P. J. Keall, and E. E. Graves, “A bone composition model for Monte Carlo x-ray transport simulations,” Med. Phys., 36, 1008-1018, 2009.
Pedikül Vidası İçin Kütle Zayıflama Katsayılarının Teorik ve Monte Carlo Simülasyon Teknikleri ile Hesaplanması
Year 2021,
, 533 - 543, 25.11.2021
Yiğit Ali Üncü
,
Onur Karaman
,
Hakan Çakın
,
Hasan Özdoğan
Abstract
Konjenital omurga eğrilikleri, vertebra kırıkları, zamanla sagital kollaps, ağrılı kifoz, tümörlere bağlı kemik yükü gibi durumlarda omurga tespiti gerekir. Literatürde birçok yöntem olmasına rağmen en sık kullanılan omurga sabitleme yöntemi pedikül vidaları ile sabitlemedir. Bu durumlarda vücutta pedikül vidalarının sıklıkla kullanıldığı bilinmektedir. Bu çalışmada vertebral kolondaki pedikül vidalarının radyolojik maruziyetinin simülasyon yöntemleri ile nasıl değerlendirildiği araştırılmıştır. İlk olarak, pedikül vidasının element analizi, Enerji Dağıtıcı X-ışını Spektroskopisi (EDS) ile Taramalı Elektron Mikroskobu (SEM) ile analiz edildi. Daha sonra elde edilen pedikül vidasının elementel bileşimleri simülasyon kodları için kullanılmıştır. Daha sonra pedikül vidası ve vertebral kolon için yarı değer kalınlık ve zayıflatma katsayısı hesaplamaları yapılmıştır. Enerji aralığı 60-250 keV olan foton etkileşim parametrelerini elde etmek için hem XCOM yazılımı hem de MCNP (Monte Carlo N-Particle) simülasyon kodu kullanılmıştır.
References
- [1] R. Skinner, J. Maybee, E. Transfeldt, R. Venter, W. Chalmers, “Experimental pullout testing and comparison of variables in transpedicular screw fixation. A biomechanical study,” Spine., 15, 195-201, 1990.
- [2] H. H. Boucher, “A method of spinal fusion,” J. Bone Jt. Surg., 41, 248-259, 1959.
- [3] B. S. Myers, Jr.P.J. Belmont, W. J. Richardson, R. Y. James, K. D. Harper, and R. W. Nightingale, “The role of imaging and in situ biomechanical testing in assessing pedicle screw pull-out strength,” Spine., 21, 1962-1968, 1996.
- [4] N. A. Ebraheim, R. Xu, M. Darwich, and R. A. Yeasting, “Anatomic relations between the lumbar pedicle and the adjacent neural structures,” Spine., 22, 2338-2341, 1997.
- [5] R. B. Ashman, R. D. Galpin, J. D. Corin, and C. E. Johnston, “2d. Biomechanical analysis of pedicle screw instrumentation systems in a corpectomy model,” Spine., 14, 1398-405, 1989.
- [6] M. H. Krag, B. D. Beynnon, M. H. Pope, and T. A. DeCoster, “Depth of insertion of transpedicular vertebral screws into human vertebrae: effect upon screw-vertebra interface strength,” Clin. Spine Surg., 1, 287-294, 1989.
- [7] A. D. Steffee, R. S. Biscup, and D. J. Sitkowski, “Segmental spine plates with pedicle screw fixation. A new internal fixation device for disorders of the lumbar and thoracolumbar spine,” Clin. Orthop. Relat. Res., 203, 45-53, 1986.
- [8] G. Lynn, D. P. Mukherjee, R. N. Kruse, K. K. Sadasivan, and J. A. Albright, “Mechanical stability of thoracolumbar pedicle screw fixation. The effect of crosslinks,” Spine., 22, 1568-73, 1997.
- [9] J. Charnley, “Anchorage of the femoral head prosthesis to the shaft of the femur,” J. Bone Jt. Surg., 42, 28-30, 1960.
- [10] F. Mahyudin, L. Widhiyanto, and H. Hermawan, “Biomaterials in orthopaedics.,” Ed. Mahyudin F, Hermawan H. Biomaterials and Medical Devices A Perspective from an Emerging Country, Cambridge, UK, Springer. 2016, pp. 161-181.
- [11] F. Á. Rodríguez-González, “Introduction to biomaterials in orthopaedic surgery,” Ed. Rodriguez-Gonzalez FÁ, Biomaterials in Orthopaedic Surgery. Ohio, USA, ASM International. 2009, pp. 1-10.
- [12] B. Patel, G. Favaro, F. Inam, M. J. Reece, A. Angadji, W. Bonfield, W. J. Huang, and M. Edirisinghe, “Cobalt-based orthopaedic alloys: Relationship between forming route, microstructure and tribological performance,” Mater. Sci. Eng. C., 32, 1222-1229, 2012.
- [13] C. Zhao, J. Zhou, Q. Mei, and F. Ren, “Microstructure and dry sliding wear behavior of ultrafine-grained Co-30 at% Cr alloy at room and elevated temperatures,” J. Alloys Compd., 770, 276-284, 2019.
- [14] Y. Okazaki, E. Gotoh, “Comparison of metal release from various metallic biomaterials in vitro,” Biomaterials., 26(1), 11-21, 2005.
- [15] K. L. Wapner, “Implications of metallic corrosion in total knee arthroplasty,” Clin. Orthop. Relat. Res., 271, 12-20, 1991.
- [16] D. B. McGregor, R. A. Baan, C. Partensky, J. M. Rice, and J. D. Wilbourn, “Evaluation of the carcinogenic risks to humans associated with surgical implants and other foreign bodies - A report of an IARC Monographs Programme,” Meeting. Eur. J. Cancer, 36, 307-313, 2000.
- [17] S. Bahl, S. Das, S. Suwas, and S. K. Chatterjee, “Engineering the next-generation tin containing β titanium alloys with high strength and low modulus for orthopedic applications,” J. Mech. Behav. Biomed. Mater., 78, 124-133, 2018.
- [18] M. Niinomi, M. Nakai, and J. Hieda, “Development of new metallic alloys for biomedical applications,”Acta. Biomater., 8, 3888-3903, 2012.
- [19] R. Zhou, D. Wei, J. Cao, W. Feng, S. Cheng, Q. Du, B. Li, Y. Wang, D. Jia, and Y. Zhou, “Metallic implant biomaterials,” ACS Appl. Mater. Interfaces. 7, 8932-8941, 2015.
- [20] O. Kovalchuk, A. Ponton, J. Filkowski, and I. Kovalchuk, “Dissimilar genome response to acute and chronic low-dose radiation in male and female mice,” Mutat. Res-Fund Mol. M., 550, 59-72, 2004.
- [21] C. M. Davisson and R. D. Evans, “Gamma-ray absorption coefficients,” Rev. Mod. Phys., 24, 79, 1952.
- [22] D. M. Taylor, “The radiopharmaceutical and its interaction with the patient,” In: Mores BM, Parker RP, Pullan BR, Ed. Physicalaspect medical imaging. New York: Wiley, 1981.
- [23] I.I. Bashter, “Calculation of radiation attenuation coefficients for shielding concretes,” Ann. Nucl. Energy, 24, 1389-1401, 1997.
- [24] M. A. Abdel-Rahman, E. A. Badawi, Y. L. Abdel-Hady, and N. Kamel, “Effect of sample thickness on the measured mass attenuation coefficients of some compounds and elements for 59.54, 661.6 and 1332:5 keV g-rays,” Nucl. Instrum. Methods Phys. Res. A: Accelerators, Spectrometers, Detectors and Associated Equipment, 447, 432-436, 2000.
- [25] K. Singh, G. Kaur, G. K. Sandhu, and B. S Lark, “Interaction of photons with some solutions,” Radiat. Phys. Chem., 61, 537-540, 2001.
- [26] B.Z. Shakhreet, C.S. Chong, T. Bandyopadhyay, D.A. Bradley, A.A. Tajuddin, A. Shukri, “Measurement of photon mass-energy absorption coefficients of paraffin wax and gypsum at 662 keV,” Radiat. Phys. Chem., 68, 757-764, 2003.
- [27] J. E. Rossen and K. L. Scrivener, “Optimization of SEM-EDS to determine the C–A–S–H composition in matured cement paste samples,” Mater. Charact., 123, 294-306, 2017.
- [28] K. Rokosz, T. Hryniewicz, S. Raaen, P. Chapon, and Ł. Dudek, “GDOES, XPS, and SEM with EDS analysis of porous coatings obtained on titanium after plasma electrolytic oxidation,” Surf. Interface Anal., 49, 303-315, 2017.
- [29] H. Yücel, E. Güllüoglu, S. Çubukçu, Y. A Üncü, “Measurement of the attenuation properties of the protective materials used as a thyroid guard and apron for personnel protection against diagnostic medical x-rays,” J. Phys. Sci., 27, 111, 2016.
- [30] S. Y. Darki and S. Keshavarz, “Studies on mass attenuation coefficients for some body tissues with different medical sources and their validation using Monte Carlo codes,” Nucl. Sci. Tech., 31(12), 1-15, 2020.
- [31] H. Özdoğan, “Theoretical calculations of production cross–sections for the 201Pb, 111In 18F and 11C radioisotopes at proton induced reactions,” Appl. Radiat Isot., 143, 1-5, 2019.
- [32] M. Şekerci, H. Özdoğan, and A. Kaplan, “Investigation on the different production routes of 67Ga radioisotope by using different level density models,” Mosc. Univ. Phys. Bull., 74, 277-281, 2019.
- [33] M. Şekerci, H. Özdoğan, and A. Kaplan, “An investigation of effects of level density models and gamma ray strength functions on cross-section calculations for the production of 90Y, 153Sm, 169Er, 177Lu and 186Re therapeutic radioisotopes via (n,γ) reactions.,” Radiochim. Acta., 108, 11-17, 2020.
- [34] H. Özdoğan, M. Şekerci, and A. Kaplan, “A new developed semi empirical formula for the α p reaction cross section at 19 1 MeV,” Mod. Phys. Lett. A, 34, 1950044, 2019.
- [35] A. Kaplan, M. Şekerci, V. Çapalı, and H. Özdoğan, “Photon induced reaction cross section calculations of several structural fusion materials,” J. Fusion Energy, 36, 213-217, 2017.
- [36] A. Kaplan, M. Şekerci, H. Özdoğan, and B. Demir, “A study on the calculations of cross–sections for 66,67gA and 75sE radionuclides production reactions via 3He particles,” Eskişehir Technical University Journal of Science and Technology A-Applied Sciences and Engineering, 21, 554-56, 2020.
- [37] H. Özdoğan, M. Şekerci, and A. Kaplan, “Investigation of gamma strength functions and level density models effects on photon induced reaction cross section calculations for the fusion structural materials 46 50Ti 51V 58Ni and 63Cu,” Appl. Radiat. Isot., 143, 6-10, 2019.
- [38] M. Şekerci, H. Özdoğan, and A. Kaplan, “Charged Particle Penetration Distance and Mass Stopping Power Calculations on Some Nuclear Reactor Control Rod Materials,” Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12, 1103-1115, 2019.
- [39] H. Özdoğan, V. Çapalı, and A. Kaplan, “Reaction cross section stopping power and penetrating distance calculations for the structural fusion material 54Fe in different reactions,” J. Fusion Energy, 34, 379-385, 2015.
- [40] M.I. Sayyed, A. Kumar, H. O Tekin, R. Kaur, M. Singh, O Agar, and M. U. Khandaker, “Evaluation of gamma ray and neutron shielding features of heavy metals doped Bi2O3 BaO Na2O MgO B2O3 glass systems,” Prog. Nucl. Energy, 118, 103118, 2020.
- [41] A. Kumar, D. K. Gaikwad, S. S. Obaid, H. O. Tekin, O. Agar, and M. I. Sayyed, “Experimental studies and Monte Carlo simulations on gamma ray shielding competence of 30 x PbO 10WO3 10Na2O 10MgO 40 x B2O3 glasses,” Prog. Nucl. Energy, 119, 103047, 2020.
- [42] M. I Sayyed, O Agar, A. Kumar, H. O. Tekin, D. K. Gaikwad, and S. S Obaid, “Evaluation of gamma ray and neutron shielding features of heavy metals doped Bi2O3 BaO Na2O MgO B2O3 glass systems,” Chem. Phys., 529, 110571, 2020.
- [43] O. Kilicoglu, E. E. Altunsoy, O. Agar, M. Kamislioglu, M. I. Sayyed, H. O. Tekin, and N. Tarhan, “Synergistic effect of La2O3 on mass stopping power MSP projected range PR and nuclear radiation shielding abilities of silicate glasses,” Results Phys., 14, 102424, 2019.
- [44] A. Sharma, M. I. Sayyed, O. Agar, and H. O. Tekin, “Simulation of shielding parameters for TeO2 WO3 GeO2 glasses using FLUKA code,” Results Phys., 13, 102199, 2019.
- [45] M. Bencheikh, A. Maghnouj, and J. Tajmouati, “Photon beam softening coefficient determination with slab thickness in small filed size: Monte Carlo study,” Phys. Part. Nucl. Lett., 14, 963-970, 2017.
- [46] O. Karaman, H. Özdogan, Y. A. Üncü, C. Karaman, and A. G. Tanır, “Investigation of the effects of different composite materials on neutron contamination caused by medical LINAC,” Kerntechnik, 85, 401-407, 2020.
- [47] A. H. Taqi and H. J. Khalil, “Experimental and theoretical investigation of gamma attenuation of building materials,” J. Phys. G., 7, 6-13, 2017.
- [48] H. Zhou, P. J. Keall, and E. E. Graves, “A bone composition model for Monte Carlo x-ray transport simulations,” Med. Phys., 36, 1008-1018, 2009.