Research Article
BibTex RIS Cite

Zc(3900) Parçacığının Molekül Durumundaki Manyetik Momenti

Year 2020, Volume: 15 Issue: 2, 244 - 252, 29.11.2020
https://doi.org/10.29233/sdufeffd.785875

Abstract

Zc(3900) parçacığının D(D^* ) ̅ ve D^* D ̅ molekül yapısında ve JPC = 1+− kuantum sayılarına sahip olduğu varsayılarak manyetik momenti Işık konisi KRD toplam kuralları kullanılarak elde edilmiştir. Manyetik moment parçacıkların geometrik konfigürasyonu ve içyapısı hakkında önemli bilgiler içermektedir. Gelecekteki deneylerde Zc(3900) rezonansının manyetik momentinin ölçülmesi, egzotik rezonansların iç organizasyonunu anlamak için oldukça yararlı olabilir. Bu çalışmada elde edilen sonuçlar ile literatürde var olan farklı modeller kullanılarak elde edilen sonuçların karşılaştırılması yapılmıştır.

References

  • [1] S. Choi, et al., “ Observation of a resonance-like structure in the π±ψ0 mass distribution in exclusive B → Kπ±ψ0 decays,” Phys. Rev. Lett. 100, 142001, 2013.
  • [2] R. Aaij et al., “Observation of the resonant character of the Z(4430)− state,” Phys. Rev. Lett., 112, 222002, 2014..
  • [3] R. Mizuk et al., “Observation of two resonance-like structures in the π+χ(c1) mass distribution in exclusive anti-B0 → K-π+χ(c1) decays,” Phys. Rev. D78, 072004, 2008.
  • [4] M. Ablikim, et al., “Observation of a Charged Charmoniumlike Structure in e+e− → π+π− J/ψ at √s =4.26 GeV,” Phys. Rev. Lett. 110, 252001, 2013.
  • [5] Z. Liu et al., “Study of e+e− → π+π−J/ψ and Observation of a Charged Charmoniumlike State at Belle,” Phys. Rev. Lett. 110, 252002, 2013. [Erratum: Phys.Rev.Lett. 111, 01990, 2013].
  • [6] M. Ablikim et al. “Observation of a Charged Charmoniumlike Structure Zc(4020) and Search for the Zc(3900) in e+e− → π+π−hc,” Phys. Rev. Lett. 111, 242001, 2013.
  • [7] M. Ablikim et al., “Observation of a charged charmoniumlike structure in e+e− → (D∗D¯∗)±π∓ at √s = 4.26GeV,” Phys. Rev. Lett. 112, 132001, 2014.
  • [8] K. Chilikin et al., “Observation of a new charged charmoniumlike state in B¯0 → J/ψK−π+ decays,” Phys. Rev. D90, 112009, 2014.
  • [9] X. Wang et al., “Measurement of e+e− → π+π−ψ(2S) via Initial State Radiation at Belle,” Phys. Rev. D91, 112007, 2015.
  • [10] I. Adachi. “Observation of two charged bottomonium-like resonances, in: 9th Conference on Flavor Physics and CP Violation.” arXiv:1105.4583, 2011.
  • [11] R. Faccini, A. Pilloni and A. D. Polosa. “Exotic Heavy Quarkonium Spectroscopy: A Mini-review,” Mod. Phys. Lett. A27, 1230025, 2012.
  • [12] A. Esposito, A. L. Guerrieri, F. Piccinini, A. Pilloni and A. D. Polosa. “Four-Quark Hadrons: An Updated Review,” Int. J. Mod. Phys. A30, 1530002, 2015.
  • [13] H.-X. Chen, W. Chen, X. Liu and S.-L. Zhu. “The hidden-charm pentaquark and tetraquark states,” Phys. Rept. 639, 1–121, 2016.
  • [14] A. Ali, J. S. Lange, and S. Stone. “Exotics: Heavy Pentaquarks and Tetraquarks,” Prog. Part. Nucl. Phys. 97, 123–198, 2017.
  • [15] A. Esposito, A. Pilloni and A. D. Polosa “Multiquark Resonances,” Phys. Rept. 668, 1–97, 2016.
  • [16] S. L. Olsen, T. Skwarnicki and D. Zieminska “Non-Standard Heavy Mesons and Baryons, an Experimental Review,” Rev. Mod. Phys. 90, 15003, 2018.
  • [17] R. F. Lebed, R.E. Mitchell and E. S. Swanson. “Heavy Quark QCD exotica.” Prog. Part. Nucl. Phys. 93, 143–194, 2017.
  • [18] F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao and B.-S. Zou. “Hadronic molecules,” Rev. Mod. Phys. 90, 015004, 2018.
  • [19] M. Nielsen, F. S. Navarra and S. H. Lee. “New Charmonium States in QCD Sum Rules: A Concise Review,” Phys. Rept. 497, 41–83, 2010.
  • [20] N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C. E. Thomas, A. Vairo and C.-Z. Yuan. “The XYZ states: experimental and theoretical status and perspectives,” arXiv:1907.07583, 2019.
  • [21] Y.-R. Liu, H.-X. Chen, W. Chen, X. Liu and S.-L. Zhu. “Pentaquark and Tetraquark states,” Prog. Part. Nucl. Phys. 107, 237–320, 2019.
  • [22] S. Agaev, K. Azizi and H. Sundu. “Four-quark exotic mesons,” Turk. J. Phys. 44, 95–173, 2020.
  • [23] H.-C. Kim, and M. Praszalowicz. “Magnetic moments of exotic pentaquarks in the chiral quark soliton model,” Phys. Lett. B585, 99–105, 2004.
  • [24] R. Bijker, M. M. Giannini and E. Santopinto. “Magnetic moments of antidecuplet pentaquarks,” Phys. Lett. B595, 260–268, 2004.
  • [25] W. W. Li, Y. R. Liu, P.Z. Huang, W. Z. Deng, X. L. Chen and S.-L. Zhu. “Magnetic moments of J**P = 3/2+ pentaquarks,” HEPNP 28, 918, 2004.
  • [26] Y. R. Liu, P. Z. Huang, W. Z. Deng, X. L. Chen and S.-L. Zhu. “Pentaquark magnetic moments in different models,” Phys. Rev. C69, 035205, 2004.
  • [27] G.-J. Wang, R. Chen, L. Ma, X. Liu, and S.-L. Zhu. “Magnetic moments of the hidden-charm pentaquark states,” Phys. Rev. D94, 094018, 2016.
  • [28] P.-z. Huang, W.-Z. Deng, X.-L. Chen and S.-L. Zhu. “Magnetic moment of the Theta+ pentaquark state,” Phys. Rev. D69, 074004, 2004.
  • [29] A. K. Agamaliev, T. M. Aliev and M. Savcı. Magnetic moment of XQ state with JPC = 1+± in light cone QCD sum rules, Phys. Rev. D95, 036015, 2017.
  • [30] U. Ozdem and K. Azizi. “Magnetic and quadrupole moments of the Zc(3900),” Phys. Rev. D96, 074030, 2017.
  • [31] U. Ozdem and K. Azizi. “Magnetic dipole moment of Zb(10610) in light-cone QCD,” Phys. Rev. D97, 014010, 2018.
  • [32] U. Ozdem and K. Azizi. “Electromagnetic multipole moments of the Pc+(4380) pentaquark in light-cone QCD,” Eur. Phys. J. C78, 379, 2018.
  • [33] K. Azizi and U. Ozdem. “The electromagnetic multipole moments of the charged open-flavor Zcq states,” J. Phys. G45, 055003, 2018.
  • [34] K. Azizi and U. Ozdem. “The electromagnetic multipole moments of the possible charm-strange pentaquarks in light-cone QCD,” Eur. Phys. J. C78, 698, 2018.
  • [35] Z.-G. Wang, W.-M. Yang and S.-L. Wan. “Magnetic moment of the pentaquark Theta+(1540) with QCD sum rules,” J. Phys. G31, 703–710, 2005.
  • [36] Z.-G. Wang, S.-L. Wan and V.-M. Yang. “Magnetic moment of the pentaquark Theta+(1540) as diquark-diquark-antiquark state with QCD sum rules”, Eur. Phys. J. C45, 201–209, 2006.
  • [37] Z.-G. Wang. “The magnetic moment of the Zc(3900) as an axial-vector tetraquark state with QCD sum rules,” Eur. Phys. J. C78, 297, 2018.
  • [38] V. L. Chernyak and I. R. Zhitnitsky. “B meson exclusive decays into baryons,” Nucl. Phys. B345, 137–172, 1990.
  • [39] V. M. Braun and I. E. Filyanov. “QCD Sum Rules in Exclusive Kinematics and Pion Wave Function,” Z. Phys. C44 198, 157, 1989.
  • [40] I. I. Balitsky, V. M. Braun and A. V. Kolesnichenko. “Radiative Decay Sigma+ —pγ in Quantum Chromodynamics,” Nucl. Phys. B312, 509–550, 1989.
  • [41] P. Colangelo and A. Khodjamirian. “QCD sum rules, a modern perspective.” arXiv:hep-ph/0010175, 2000.
  • [42] R. M., Dias Albuquerque, J. M. Khemchandani, A. Martınez Torres, F. S. Navarra, M. Nielsen and C. M. Zanetti. “QCD sum rules approach to the X, Y and Z states,” J. Phys. G46, 093002, 2019.
  • [43] P. Ball, V. M. Braun and N. Kivel. “Photon distribution amplitudes in QCD,” Nucl. Phys. B649, 263–296, 2003.
  • [44] K. Azizi, A. R. Olamaei and S. Rostami. “Beautiful mathematics for beauty-full and other multi-heavy hadronic systems,” Eur. Phys. J. A54, 162, 2018.
  • [45] S. S. Agaev, K. Azizi and H. Sundu. “Application of the QCD light cone sum rule to tetraquarks: the strong vertices XbXbρ and XcXcρ,” Phys. Rev. D93, 114036, 2016.
  • [46] W. Chen, T. Steele, H.-X. Chen and S.-L. Zhu. “Mass spectra of Zc and Zb exotic states as hadron molecules,” Phys. Rev. D92, 054002, 2015.
  • [47] B. L. Ioffe. “QCD at low energies,” Prog. Part. Nucl. Phys. 56, 232–277, 2006.
  • [48] J. Rohrwild. “Determination of the magnetic susceptibility of the quark condensate using radiative heavy meson decays,” JHEP 09, 073, 2007.

Magnetic moment of Zc(3900) as molecular state

Year 2020, Volume: 15 Issue: 2, 244 - 252, 29.11.2020
https://doi.org/10.29233/sdufeffd.785875

Abstract

Employing light-cone QCD sum rule, we have acquired the magnetic moment of the Zc(3900) resonance by considering it as the molecular form of D(D^* ) ̅ and D^* D ̅ resonance with quantum numbers JPC = 1+−. The magnetic moment contains crucial knowledge about the internal organization of particles and their geometric configuration. Measurement of the magnetic moment of the Zc(3900) resonance in future experiments can be quite useful comprehension the inner organization of exotic resonances. A comparison of our numerical values on the magnetic moment with those estimated by the other theoretical models existing in literature is carried out.

References

  • [1] S. Choi, et al., “ Observation of a resonance-like structure in the π±ψ0 mass distribution in exclusive B → Kπ±ψ0 decays,” Phys. Rev. Lett. 100, 142001, 2013.
  • [2] R. Aaij et al., “Observation of the resonant character of the Z(4430)− state,” Phys. Rev. Lett., 112, 222002, 2014..
  • [3] R. Mizuk et al., “Observation of two resonance-like structures in the π+χ(c1) mass distribution in exclusive anti-B0 → K-π+χ(c1) decays,” Phys. Rev. D78, 072004, 2008.
  • [4] M. Ablikim, et al., “Observation of a Charged Charmoniumlike Structure in e+e− → π+π− J/ψ at √s =4.26 GeV,” Phys. Rev. Lett. 110, 252001, 2013.
  • [5] Z. Liu et al., “Study of e+e− → π+π−J/ψ and Observation of a Charged Charmoniumlike State at Belle,” Phys. Rev. Lett. 110, 252002, 2013. [Erratum: Phys.Rev.Lett. 111, 01990, 2013].
  • [6] M. Ablikim et al. “Observation of a Charged Charmoniumlike Structure Zc(4020) and Search for the Zc(3900) in e+e− → π+π−hc,” Phys. Rev. Lett. 111, 242001, 2013.
  • [7] M. Ablikim et al., “Observation of a charged charmoniumlike structure in e+e− → (D∗D¯∗)±π∓ at √s = 4.26GeV,” Phys. Rev. Lett. 112, 132001, 2014.
  • [8] K. Chilikin et al., “Observation of a new charged charmoniumlike state in B¯0 → J/ψK−π+ decays,” Phys. Rev. D90, 112009, 2014.
  • [9] X. Wang et al., “Measurement of e+e− → π+π−ψ(2S) via Initial State Radiation at Belle,” Phys. Rev. D91, 112007, 2015.
  • [10] I. Adachi. “Observation of two charged bottomonium-like resonances, in: 9th Conference on Flavor Physics and CP Violation.” arXiv:1105.4583, 2011.
  • [11] R. Faccini, A. Pilloni and A. D. Polosa. “Exotic Heavy Quarkonium Spectroscopy: A Mini-review,” Mod. Phys. Lett. A27, 1230025, 2012.
  • [12] A. Esposito, A. L. Guerrieri, F. Piccinini, A. Pilloni and A. D. Polosa. “Four-Quark Hadrons: An Updated Review,” Int. J. Mod. Phys. A30, 1530002, 2015.
  • [13] H.-X. Chen, W. Chen, X. Liu and S.-L. Zhu. “The hidden-charm pentaquark and tetraquark states,” Phys. Rept. 639, 1–121, 2016.
  • [14] A. Ali, J. S. Lange, and S. Stone. “Exotics: Heavy Pentaquarks and Tetraquarks,” Prog. Part. Nucl. Phys. 97, 123–198, 2017.
  • [15] A. Esposito, A. Pilloni and A. D. Polosa “Multiquark Resonances,” Phys. Rept. 668, 1–97, 2016.
  • [16] S. L. Olsen, T. Skwarnicki and D. Zieminska “Non-Standard Heavy Mesons and Baryons, an Experimental Review,” Rev. Mod. Phys. 90, 15003, 2018.
  • [17] R. F. Lebed, R.E. Mitchell and E. S. Swanson. “Heavy Quark QCD exotica.” Prog. Part. Nucl. Phys. 93, 143–194, 2017.
  • [18] F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao and B.-S. Zou. “Hadronic molecules,” Rev. Mod. Phys. 90, 015004, 2018.
  • [19] M. Nielsen, F. S. Navarra and S. H. Lee. “New Charmonium States in QCD Sum Rules: A Concise Review,” Phys. Rept. 497, 41–83, 2010.
  • [20] N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C. E. Thomas, A. Vairo and C.-Z. Yuan. “The XYZ states: experimental and theoretical status and perspectives,” arXiv:1907.07583, 2019.
  • [21] Y.-R. Liu, H.-X. Chen, W. Chen, X. Liu and S.-L. Zhu. “Pentaquark and Tetraquark states,” Prog. Part. Nucl. Phys. 107, 237–320, 2019.
  • [22] S. Agaev, K. Azizi and H. Sundu. “Four-quark exotic mesons,” Turk. J. Phys. 44, 95–173, 2020.
  • [23] H.-C. Kim, and M. Praszalowicz. “Magnetic moments of exotic pentaquarks in the chiral quark soliton model,” Phys. Lett. B585, 99–105, 2004.
  • [24] R. Bijker, M. M. Giannini and E. Santopinto. “Magnetic moments of antidecuplet pentaquarks,” Phys. Lett. B595, 260–268, 2004.
  • [25] W. W. Li, Y. R. Liu, P.Z. Huang, W. Z. Deng, X. L. Chen and S.-L. Zhu. “Magnetic moments of J**P = 3/2+ pentaquarks,” HEPNP 28, 918, 2004.
  • [26] Y. R. Liu, P. Z. Huang, W. Z. Deng, X. L. Chen and S.-L. Zhu. “Pentaquark magnetic moments in different models,” Phys. Rev. C69, 035205, 2004.
  • [27] G.-J. Wang, R. Chen, L. Ma, X. Liu, and S.-L. Zhu. “Magnetic moments of the hidden-charm pentaquark states,” Phys. Rev. D94, 094018, 2016.
  • [28] P.-z. Huang, W.-Z. Deng, X.-L. Chen and S.-L. Zhu. “Magnetic moment of the Theta+ pentaquark state,” Phys. Rev. D69, 074004, 2004.
  • [29] A. K. Agamaliev, T. M. Aliev and M. Savcı. Magnetic moment of XQ state with JPC = 1+± in light cone QCD sum rules, Phys. Rev. D95, 036015, 2017.
  • [30] U. Ozdem and K. Azizi. “Magnetic and quadrupole moments of the Zc(3900),” Phys. Rev. D96, 074030, 2017.
  • [31] U. Ozdem and K. Azizi. “Magnetic dipole moment of Zb(10610) in light-cone QCD,” Phys. Rev. D97, 014010, 2018.
  • [32] U. Ozdem and K. Azizi. “Electromagnetic multipole moments of the Pc+(4380) pentaquark in light-cone QCD,” Eur. Phys. J. C78, 379, 2018.
  • [33] K. Azizi and U. Ozdem. “The electromagnetic multipole moments of the charged open-flavor Zcq states,” J. Phys. G45, 055003, 2018.
  • [34] K. Azizi and U. Ozdem. “The electromagnetic multipole moments of the possible charm-strange pentaquarks in light-cone QCD,” Eur. Phys. J. C78, 698, 2018.
  • [35] Z.-G. Wang, W.-M. Yang and S.-L. Wan. “Magnetic moment of the pentaquark Theta+(1540) with QCD sum rules,” J. Phys. G31, 703–710, 2005.
  • [36] Z.-G. Wang, S.-L. Wan and V.-M. Yang. “Magnetic moment of the pentaquark Theta+(1540) as diquark-diquark-antiquark state with QCD sum rules”, Eur. Phys. J. C45, 201–209, 2006.
  • [37] Z.-G. Wang. “The magnetic moment of the Zc(3900) as an axial-vector tetraquark state with QCD sum rules,” Eur. Phys. J. C78, 297, 2018.
  • [38] V. L. Chernyak and I. R. Zhitnitsky. “B meson exclusive decays into baryons,” Nucl. Phys. B345, 137–172, 1990.
  • [39] V. M. Braun and I. E. Filyanov. “QCD Sum Rules in Exclusive Kinematics and Pion Wave Function,” Z. Phys. C44 198, 157, 1989.
  • [40] I. I. Balitsky, V. M. Braun and A. V. Kolesnichenko. “Radiative Decay Sigma+ —pγ in Quantum Chromodynamics,” Nucl. Phys. B312, 509–550, 1989.
  • [41] P. Colangelo and A. Khodjamirian. “QCD sum rules, a modern perspective.” arXiv:hep-ph/0010175, 2000.
  • [42] R. M., Dias Albuquerque, J. M. Khemchandani, A. Martınez Torres, F. S. Navarra, M. Nielsen and C. M. Zanetti. “QCD sum rules approach to the X, Y and Z states,” J. Phys. G46, 093002, 2019.
  • [43] P. Ball, V. M. Braun and N. Kivel. “Photon distribution amplitudes in QCD,” Nucl. Phys. B649, 263–296, 2003.
  • [44] K. Azizi, A. R. Olamaei and S. Rostami. “Beautiful mathematics for beauty-full and other multi-heavy hadronic systems,” Eur. Phys. J. A54, 162, 2018.
  • [45] S. S. Agaev, K. Azizi and H. Sundu. “Application of the QCD light cone sum rule to tetraquarks: the strong vertices XbXbρ and XcXcρ,” Phys. Rev. D93, 114036, 2016.
  • [46] W. Chen, T. Steele, H.-X. Chen and S.-L. Zhu. “Mass spectra of Zc and Zb exotic states as hadron molecules,” Phys. Rev. D92, 054002, 2015.
  • [47] B. L. Ioffe. “QCD at low energies,” Prog. Part. Nucl. Phys. 56, 232–277, 2006.
  • [48] J. Rohrwild. “Determination of the magnetic susceptibility of the quark condensate using radiative heavy meson decays,” JHEP 09, 073, 2007.
There are 48 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Ulaş Özdem 0000-0002-1907-2894

Publication Date November 29, 2020
Published in Issue Year 2020 Volume: 15 Issue: 2

Cite

IEEE U. Özdem, “Magnetic moment of Zc(3900) as molecular state”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 15, no. 2, pp. 244–252, 2020, doi: 10.29233/sdufeffd.785875.