Ab-initio Calculations; Mechanical and Electronic Properties of New M4As3Co (M: Al, Ga) Compounds
Year 2021,
Volume: 16 Issue: 1, 86 - 95, 27.05.2021
Buğra Yıldız
,
Aytaç Erkişi
Abstract
In this study, electronic, magnetic and mechanical properties of Al4As3Co and Ga4As3Co compounds have been investigated in detail. All the calculations have been done by using Vienna Ab initio Simulation Package by using Generalized Gradient Approximation (GGA) within Density Functional Theory (DFT). M4As3Co (M: Al, Ga) compounds have simple cubic structure and they have F-43m space group with 216 space number. In order to find most suitable magnetic order, ferromagnetic and three type of antiferromagnetic orders have been employed. Although all the ground state energies for both of our materials are close to each other, it is understood that, energetically most stable magnetic order is ferromagnetic order. After optimization procedure, electronic band structures with density of states have been plotted. Plots prove that, Al4As3Co compound has semiconductor nature with very little direct band gap 0.044 eV while Ga4As3Co compound has zero indirect band gap. Finally, elastic constants have been calculated and important mechanical properties have been estimated. As result of these estimation, it could be said that our materials are mechanically stable.
Supporting Institution
Pamukkale University Research Project Unit
Project Number
2019BSP013
Thanks
This research was supported by the Pamukkale University Research Project Unit [project number 2019BSP013].
References
- [1] S. Mahajan (Ed.), Handbook of Semiconductors. Second ed., Elsevier, Amsterdam, 1994.
- [2] S. J. Moss and A. Ledwith, The Chemistry of the Semiconductor Industry. Springer. ISBN 978-0-216-92005-7, 1987.
- [3] P. Palacios, P. Wahnon, and C. Tablero, “Ab initio phonon dispersion calculations for TixGanAsm and TixGanPm compounds,” Comput. Mater. Sci., 33, 118–124, 2005.
- [4] P. Palacios, J. J. Fernandez, K. Sanchez, J. C. Conesa, and P. Wahnon, “First-principles investigation of isolated band formation in half-metallic TixGa1−xP,” Phys. Rev. B, 73, 085206, 2006.
- [5] A. Luque, and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett., 78, 5014, 1997.
- [6] P. Mahadevan and A. Zunger, “First-principles investigation of the assumptions underlying model-Hamiltonian approaches to ferromagnetism of 3d impurities in III-V semiconductors,” Phys. Rev. B, 69, 115211, 2004.
- [7] M. Wierzbowska, D. Sánchez-Portal, and S. Sanvito, “Different origins of the ferromagnetic order in (Ga,Mn)As and (Ga,Mn)N,” Phys. Rev. B, 70, 235209, 2004.
- [8] S. Sanvito, G. Theurich, and N. A. Hill, “Density functional calculations for III–V diluted ferromagnetic semiconductors: A review,” J. Supercond. Novel Magn. Mater., 15, 85, 2002.
- [9] K. Sato and H. Katayama-Yoshida, “First principles materials design for semiconductor spintronics,” Semicond. Sci. Technol., 17, 367, 2002.
- [10] L. Kronik, M. Jain, and J. R. Chelikowsky, “Electronic structure and spin polarization of MnxGa1−xN,” Phys. Rev. B 66, 2002.
- [11] T. Dietl, H. Ohno, and F. Matsukura, “Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors,” Phys. Rev. B 63, 195205, 2001.
- [12] H. Ohno, “Making nonmagnetic semiconductors ferromagnetic,” Science, 281, 951, 1998.
- [13] S. A. Wolf, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics A retrospective and perspective,” IBM Journal of Research and Development, 2006.
- [14] S. Bhatti et al. “Spintronics based random access memory: A review,” Materials Today, 20 (9), 530–548, 2017.
- [15] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, “Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients,” Rev. Mod. Phys., 64, 1045, 1992.
- [16] G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B, 47, 558–561, 1993.
- [17] G. Kresse and J. Furthmuller, “Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci., 6, 15–50, 1996.
- [18] P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B, 50, 17953-17979, 1994.
- [19] W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. A, 140, A1133-A1138, 1965.
- [20] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev., 136, B864-B871, 1964.
- [21] J.P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., 77, 3865-3868, 1996.
- [22] H. J. Monkhorst and J.D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B, 13, 5188-5192, 1976.
- [23] K. Momma and F. Izumi, “VESTA: a three-dimensional visualization system for electronic and structural analysis,” Appl. Crystallogr., 41 (3), 653-658, 2008.
- [24] F. Han, A Modern Course in the Quantum Theory of Solids. Singapore: World Scientific Publishing Co. Pte. Ltd., 2013, pp. 378-379.
- [25] P. Vinet, J.H. Rose, J. Ferrante, and J.R. Smith, “Universal features of the equation of state of solids,” J. Phys.: Condens. Matter., 1, 1941, 1969.
- [26] C. Kaderoglu, G. Surucu, and A. Erkisi, “The investigation of electronic, elastic and vibrational properties of an interlanthanide perovskite: PrYbO3,” J. Electronic Materials, 46, 5827–5836, 2017.
- [27] Y. L. Page and P. Saxe, “Symmetry-general least-squares extraction of elastic coefficients from ab initio total energy calculations,” Phys. Rev. B, 63, 174103, 2001.
- [28] F. Mouhat and F. X. Coudert, “Necessary and sufficient elastic stability conditions in various crystal systems,” Phys. Rev. B, 90, 224104, 2014.
- [29] W. Voigt, Lehrbuch der Kristallphysik, B.G. Teubner, Leipzig und Berlin, 1928.
- [30] A. Reuss, “Berechnung der fliessgrenze von mischkristallen auf grund der plastizitatsbedingung fur einkristalle,” J. Appl. Math. Mech., 9, 49:58, 1929.
- [31] R. Hill, “The elastic behavior of a crystalline aggregate,” Proc. Phys. Soc. A, 65, 349-354, 1952.
- [32] A. Erkisi, B. Yildiz, and G. Surucu, “First principles study on new half-metallic ferromagnetic ternary zinc-based sulfide and telluride (Zn3VS4 and Zn3VTe4),” Materials Research Express, 6, 076107, 2019.
- [33] G. V. Sinko and N. A. Smirnov, “Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure,” Journal of Physics: Condensed Matter., 14, 6989–7005, 2002.
- [34] E. Schreiber, O. L. Anderson, and N. Soga, Elastic Constants and their Measurements. McGraw-Hill, New York, 1973.
Yeni M4As3Co (M: Al, Ga) Bileşiğinin Ab-initio Hesaplamaları ile Mekanik ve Elektronik Özellikleri
Year 2021,
Volume: 16 Issue: 1, 86 - 95, 27.05.2021
Buğra Yıldız
,
Aytaç Erkişi
Abstract
Bu çalışmada, Al4As3Co ve Ga4As3Co bileşiklerinin elektronik, manyetik ve mekanik özellikleri detaylı bir şekilde incelenmiştir. Tüm hesaplamalar Vienna Ab initio Simulation Package kullanılarak Yoğunluk Fonksiyoneli Teorisi (YFT) içinde Genelleştirilmiş Gradyant Yaklaşımı (GGY) kullanılarak yapılmıştır. M4As3Co (M: Al, Ga) bileşikleri basit kübik yapıya sahip olup 216 uzay numaralı ve F-43m uzay grubuna sahiptir. En uygun manyetik düzeni bulmak için ferromanyetik ve üç tip antiferromanyetik düzen kullanılmıştır. Her iki malzememiz için tüm taban durum enerjileri birbirine yakın olmasına rağmen, enerjisel olarak en kararlı manyetik düzenin ferromanyetik düzen olduğu anlaşılmaktadır. Optimizasyon prosedürünün ardından, durum yoğunluğuna sahip elektronik bant yapısı çizilmiştir. Grafikler, Ga4As3Co bileşiğinin sıfır dolaylı bant aralığına sahip olduğunu kanıtlarken, Al4As3Co bileşiğinin de 0,044 eV’luk çok küçük doğrudan bant aralığı ile yarı iletken doğaya sahip olduğunu kanıtlamaktadır. Son olarak, elastik sabitler hesaplanmış ve önemli mekanik özellikler tahmin edilmiştir. Bu tahminler sonucunda, malzemelerimizin mekanik olarak kararlı olduğu söylenebilir.
Project Number
2019BSP013
References
- [1] S. Mahajan (Ed.), Handbook of Semiconductors. Second ed., Elsevier, Amsterdam, 1994.
- [2] S. J. Moss and A. Ledwith, The Chemistry of the Semiconductor Industry. Springer. ISBN 978-0-216-92005-7, 1987.
- [3] P. Palacios, P. Wahnon, and C. Tablero, “Ab initio phonon dispersion calculations for TixGanAsm and TixGanPm compounds,” Comput. Mater. Sci., 33, 118–124, 2005.
- [4] P. Palacios, J. J. Fernandez, K. Sanchez, J. C. Conesa, and P. Wahnon, “First-principles investigation of isolated band formation in half-metallic TixGa1−xP,” Phys. Rev. B, 73, 085206, 2006.
- [5] A. Luque, and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett., 78, 5014, 1997.
- [6] P. Mahadevan and A. Zunger, “First-principles investigation of the assumptions underlying model-Hamiltonian approaches to ferromagnetism of 3d impurities in III-V semiconductors,” Phys. Rev. B, 69, 115211, 2004.
- [7] M. Wierzbowska, D. Sánchez-Portal, and S. Sanvito, “Different origins of the ferromagnetic order in (Ga,Mn)As and (Ga,Mn)N,” Phys. Rev. B, 70, 235209, 2004.
- [8] S. Sanvito, G. Theurich, and N. A. Hill, “Density functional calculations for III–V diluted ferromagnetic semiconductors: A review,” J. Supercond. Novel Magn. Mater., 15, 85, 2002.
- [9] K. Sato and H. Katayama-Yoshida, “First principles materials design for semiconductor spintronics,” Semicond. Sci. Technol., 17, 367, 2002.
- [10] L. Kronik, M. Jain, and J. R. Chelikowsky, “Electronic structure and spin polarization of MnxGa1−xN,” Phys. Rev. B 66, 2002.
- [11] T. Dietl, H. Ohno, and F. Matsukura, “Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors,” Phys. Rev. B 63, 195205, 2001.
- [12] H. Ohno, “Making nonmagnetic semiconductors ferromagnetic,” Science, 281, 951, 1998.
- [13] S. A. Wolf, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics A retrospective and perspective,” IBM Journal of Research and Development, 2006.
- [14] S. Bhatti et al. “Spintronics based random access memory: A review,” Materials Today, 20 (9), 530–548, 2017.
- [15] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, “Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients,” Rev. Mod. Phys., 64, 1045, 1992.
- [16] G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B, 47, 558–561, 1993.
- [17] G. Kresse and J. Furthmuller, “Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci., 6, 15–50, 1996.
- [18] P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B, 50, 17953-17979, 1994.
- [19] W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. A, 140, A1133-A1138, 1965.
- [20] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev., 136, B864-B871, 1964.
- [21] J.P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., 77, 3865-3868, 1996.
- [22] H. J. Monkhorst and J.D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B, 13, 5188-5192, 1976.
- [23] K. Momma and F. Izumi, “VESTA: a three-dimensional visualization system for electronic and structural analysis,” Appl. Crystallogr., 41 (3), 653-658, 2008.
- [24] F. Han, A Modern Course in the Quantum Theory of Solids. Singapore: World Scientific Publishing Co. Pte. Ltd., 2013, pp. 378-379.
- [25] P. Vinet, J.H. Rose, J. Ferrante, and J.R. Smith, “Universal features of the equation of state of solids,” J. Phys.: Condens. Matter., 1, 1941, 1969.
- [26] C. Kaderoglu, G. Surucu, and A. Erkisi, “The investigation of electronic, elastic and vibrational properties of an interlanthanide perovskite: PrYbO3,” J. Electronic Materials, 46, 5827–5836, 2017.
- [27] Y. L. Page and P. Saxe, “Symmetry-general least-squares extraction of elastic coefficients from ab initio total energy calculations,” Phys. Rev. B, 63, 174103, 2001.
- [28] F. Mouhat and F. X. Coudert, “Necessary and sufficient elastic stability conditions in various crystal systems,” Phys. Rev. B, 90, 224104, 2014.
- [29] W. Voigt, Lehrbuch der Kristallphysik, B.G. Teubner, Leipzig und Berlin, 1928.
- [30] A. Reuss, “Berechnung der fliessgrenze von mischkristallen auf grund der plastizitatsbedingung fur einkristalle,” J. Appl. Math. Mech., 9, 49:58, 1929.
- [31] R. Hill, “The elastic behavior of a crystalline aggregate,” Proc. Phys. Soc. A, 65, 349-354, 1952.
- [32] A. Erkisi, B. Yildiz, and G. Surucu, “First principles study on new half-metallic ferromagnetic ternary zinc-based sulfide and telluride (Zn3VS4 and Zn3VTe4),” Materials Research Express, 6, 076107, 2019.
- [33] G. V. Sinko and N. A. Smirnov, “Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure,” Journal of Physics: Condensed Matter., 14, 6989–7005, 2002.
- [34] E. Schreiber, O. L. Anderson, and N. Soga, Elastic Constants and their Measurements. McGraw-Hill, New York, 1973.