Research Article
BibTex RIS Cite

PbTe Kuantum Noktalar ve Fotovoltaik Uygulamalarda Bant Enerji Hizalamasının Yapılması

Year 2021, Volume: 16 Issue: 2, 434 - 443, 25.11.2021
https://doi.org/10.29233/sdufeffd.891908

Abstract

Kurşun tellür (PbTe) kuantum noktaları yüksek çoklu eksiton üretim verimine sahip olmaları nedeniyle fotovoltaik uygulama alanları için gelecek vaat eden adaylar olarak değerlendirilseler de görece daha az araştırılmış yüzey kimyaları ve atmosferik ortama olan hassasiyetleri sebebiyle güneş gözesi tasarımlarında sınırlı alaka görmektedirler. Bu çalışma, yüksek kristalli yapıya sahip PbTe kuantum noktalarının sentezini, karakterizasyonunu ve bant hizalama vasıtasıyla solüsyon bazlı güneş gözelerinde kullanımını konu almaktadır. Ultraviyole fotoelektron spektroskopisi çalışmaları, iletim ve değerlik bant seviyelerinin ligant değişimi işleminde kullanılan ligant türüne bağlı olduğunu göstermiştir. Tetrabütilamonyum iyodür (TBAI) ve 1,2-etanditiyol (EDT) ligantlarına tabi tutulmuş PbTe kuantum noktalarının vakuma karşı iletim ve değerlik bant seviyeleri sırasıyla -3,73 eV/-4,83 eV ve -3,48 eV/-4,45 eV olarak belirlenmiştir. TBAI ve EDT ligantlarıyla işlenmiş tabakaların arasında bulunan bant ofseti, güneşi soğuran tabakada bant hizalamasını gerçekleştirebilmemize olanak sağlamıştır. Sonuç olarak, TBAI ve EDT ligantları ile işlem görmüş kuantum noktalarının birlikte kullanıldığı çift katmanlı göze mimarisine sahip güneş gözeleri %0.65 foton değiştirme verimine ulaşmıştır.

Project Number

115F187 and 117E787

References

  • [1] E. M. Sanehira, A. R. Marshall, J. A. Christians, S. P. Harvey, P. N. Ciesielski, L. M. Wheeler, P. Schulz, L. Y. Lin, M. C. Beard, and J. M. Luther, “Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells,” Sci. Adv., 3, eaao4204, 2017.
  • [2] Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics, 7, 933–933, 2013.
  • [3] B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics, 7, 407–412, 2013.
  • [4] J. Xu, O. Voznyy, M. Liu, A. R. Kirmani, G. Walters, R. Munir, M. Abdelsamie, A. H. Proppe, A. Sarkar, F. P. García de Arquer, M. Wei, B. Sun, M. Liu, O. Ouellette, R. Quintero-Bermudez, J. Li, J. Fan, L. Quan, P. Todorovic, H. Tan, S. Hoogland, S. O. Kelley, M. Stefik, A. Amassian, and E. H. Sargent, “2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids,” Nat. Nanotechnol., 13, 456–462, 2018.
  • [5] G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature, 442, 180–183, 2006.
  • [6] A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. J. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids.,” Nat. Nanotechnol., 7, 577–582, 2012.
  • [7] D. Asil, B. J. Walker, B. Ehrler, Y. Vaynzof, A. Sepe, S. Bayliss, A. Sadhanala, P. C. Y. Chow, P. E. Hopkinson, U. Steiner, N. C. Greenham, and R. H. Friend, “Role of PbSe structural stabilization in photovoltaic cells,” Adv. Funct. Mater., 25, 928–935, 2015.
  • [8] T. Hacıefendioğlu, T. K. Solmaz, M. Erkan, and D. Asil, “A comprehensive approach for the instability of PbTe quantum dots and design of a combinatorial passivation strategy,” Sol. Energy Mater. Sol. Cells, 207, 110362, 2020.
  • [9] M. L. Böhm, T. C. Jellicoe, M. Tabachnyk, N. J. L. K. Davis, F. Wisnivesky-Rocca-Rivarola, C. Ducati, B. Ehrler, A. A. Bakulin, and N. C. Greenham, “Lead telluride quantum dot solar cells displaying external quantum efficiencies exceeding 120%,” Nano Lett., 15, 7987–7993, 2015.
  • [10] W. K. Bae, J. Joo, L. A. Padilha, J. Won, D. C. Lee, Q. Lin, W. Koh, H. Luo, V. I. Klimov, and J. M. Pietryga, “Highly effective surface passivation of pbse quantum dots through reaction with molecular chlorine,” J. Am. Chem. Soc., 134, 20160–20168, 2012.
  • [11] Q. Lin, H. J. Yun, W. Liu, H.-J. Song, N. S. Makarov, O. Isaienko, T. Nakotte, G. Chen, H. Luo, V. I. Klimov, and J. M. Pietryga, “Phase-transfer ligand exchange of lead chalcogenide quantum dots for direct deposition of thick, highly conductive films,” J. Am. Chem. Soc., 139, 6644–6653, 2017.
  • [12] H. Zhang, J. Jang, W. Liu, and D. V. Talapin, “Colloidal nanocrystals with ınorganic halide, pseudohalide, and halometallate ligands,” ACS Nano, 8, 7359–7369, 2014.
  • [13] C.-H. M. Chuang, P. R. Brown, V. Bulović, and M. G. Bawendi, “Improved performance and stability in quantum dot solar cells through band alignment engineering.,” Nat. Mater., 13, 796–801, 2014.
  • [14] J. J. Urban, D. V. Talapin, E. V. Shevchenko, and C. B. Murray, “Self-Assembly of PbTe quantum dots into nanocrystal superlattices and glassy films,” J. Am. Chem. Soc., 128, 3248–3255, 2006.
  • [15] J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C. Johnson, P. Yu, O. I. Mićić, R. J. Ellingson, and A. J. Nozik, “PbTe colloidal nanocrystals: Synthesis, characterization, and multiple exciton generation,” J. Am. Chem. Soc., 128, 3241–3247, 2006.
  • [16] W. Lu, J. Fang, K. L. Stokes, and J. Lin, “Shape Evolution and Self Assembly of Monodisperse PbTe Nanocrystals,” J. Am. Chem. Soc., 126, 11798–11799, 2004.
  • [17] L. Yang, M. Tabachnyk, S. L. Bayliss, M. L. Böhm, K. Broch, N. C. Greenham, R. H. Friend, and B. Ehrler, “Solution-Processable Singlet Fission Photovoltaic Devices,” Nano Lett., 15, 354–358, 2015.
  • [18] A. B. Mandale and S. Badrinarayanan, “X-ray photoelectron spectroscopic studies of the semimagnetic semiconductor system Pb1−xMnxTe,” J. Electron Spectros. Relat. Phenomena., 53 (1-2), 87–95, 1990.
  • [19] E. A. Kraut, R. W. Grant, J. R. Waldrop, and S. P. Kowalczyk, “Semiconductor core-level to valence-band maximum binding-energy differences: Precise determination by x-ray photoelectron spectroscopy,” Phys. Rev. B, 28, 1965–1977, 1983.

PbTe Quantum Dots and Engineering of the Energy Band Alignment in Photovoltaic Applications

Year 2021, Volume: 16 Issue: 2, 434 - 443, 25.11.2021
https://doi.org/10.29233/sdufeffd.891908

Abstract

Lead telluride (PbTe) quantum dots, despite being considered as one of the most promising candidates for future photovoltaics owing to their higher multiple exciton generation yields, have received limited attention in solar cell designs due their less explored surface chemistry and high air sensitivity. This study demonstrates the synthesis and characterization of highly crystalline PbTe QDs and their utilization in solution processed solar cells through band alignment engineering. Ultraviolet photoelectron spectroscopy studies showed that the conduction and valence band levels depend strongly on the type of surface ligand utilized for the ligand exchange process. Conduction and valence band levels of tetrabutylammonium iodide (TBAI) and 1,2-ethanedithiol (EDT) treated PbTe QDs with respect to vacuum were measured as -3.73 eV/-4.83 eV and -3.48 eV/-4.45 eV, respectively. The presence of a band offset between the conduction and valence band levels of TBAI and EDT treated layers allowed us to engineer the band alignment in the light absorbing layer. As a result, solar cells where TBAI and EDT ligand treated QDs were utilized in a bilayer cell architecture reached a photo conversion efficiency of 0.65%.

Supporting Institution

The Scientific and Technological Research Council of Turkey (TÜBİTAK)

Project Number

115F187 and 117E787

References

  • [1] E. M. Sanehira, A. R. Marshall, J. A. Christians, S. P. Harvey, P. N. Ciesielski, L. M. Wheeler, P. Schulz, L. Y. Lin, M. C. Beard, and J. M. Luther, “Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells,” Sci. Adv., 3, eaao4204, 2017.
  • [2] Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics, 7, 933–933, 2013.
  • [3] B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics, 7, 407–412, 2013.
  • [4] J. Xu, O. Voznyy, M. Liu, A. R. Kirmani, G. Walters, R. Munir, M. Abdelsamie, A. H. Proppe, A. Sarkar, F. P. García de Arquer, M. Wei, B. Sun, M. Liu, O. Ouellette, R. Quintero-Bermudez, J. Li, J. Fan, L. Quan, P. Todorovic, H. Tan, S. Hoogland, S. O. Kelley, M. Stefik, A. Amassian, and E. H. Sargent, “2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids,” Nat. Nanotechnol., 13, 456–462, 2018.
  • [5] G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature, 442, 180–183, 2006.
  • [6] A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. J. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids.,” Nat. Nanotechnol., 7, 577–582, 2012.
  • [7] D. Asil, B. J. Walker, B. Ehrler, Y. Vaynzof, A. Sepe, S. Bayliss, A. Sadhanala, P. C. Y. Chow, P. E. Hopkinson, U. Steiner, N. C. Greenham, and R. H. Friend, “Role of PbSe structural stabilization in photovoltaic cells,” Adv. Funct. Mater., 25, 928–935, 2015.
  • [8] T. Hacıefendioğlu, T. K. Solmaz, M. Erkan, and D. Asil, “A comprehensive approach for the instability of PbTe quantum dots and design of a combinatorial passivation strategy,” Sol. Energy Mater. Sol. Cells, 207, 110362, 2020.
  • [9] M. L. Böhm, T. C. Jellicoe, M. Tabachnyk, N. J. L. K. Davis, F. Wisnivesky-Rocca-Rivarola, C. Ducati, B. Ehrler, A. A. Bakulin, and N. C. Greenham, “Lead telluride quantum dot solar cells displaying external quantum efficiencies exceeding 120%,” Nano Lett., 15, 7987–7993, 2015.
  • [10] W. K. Bae, J. Joo, L. A. Padilha, J. Won, D. C. Lee, Q. Lin, W. Koh, H. Luo, V. I. Klimov, and J. M. Pietryga, “Highly effective surface passivation of pbse quantum dots through reaction with molecular chlorine,” J. Am. Chem. Soc., 134, 20160–20168, 2012.
  • [11] Q. Lin, H. J. Yun, W. Liu, H.-J. Song, N. S. Makarov, O. Isaienko, T. Nakotte, G. Chen, H. Luo, V. I. Klimov, and J. M. Pietryga, “Phase-transfer ligand exchange of lead chalcogenide quantum dots for direct deposition of thick, highly conductive films,” J. Am. Chem. Soc., 139, 6644–6653, 2017.
  • [12] H. Zhang, J. Jang, W. Liu, and D. V. Talapin, “Colloidal nanocrystals with ınorganic halide, pseudohalide, and halometallate ligands,” ACS Nano, 8, 7359–7369, 2014.
  • [13] C.-H. M. Chuang, P. R. Brown, V. Bulović, and M. G. Bawendi, “Improved performance and stability in quantum dot solar cells through band alignment engineering.,” Nat. Mater., 13, 796–801, 2014.
  • [14] J. J. Urban, D. V. Talapin, E. V. Shevchenko, and C. B. Murray, “Self-Assembly of PbTe quantum dots into nanocrystal superlattices and glassy films,” J. Am. Chem. Soc., 128, 3248–3255, 2006.
  • [15] J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C. Johnson, P. Yu, O. I. Mićić, R. J. Ellingson, and A. J. Nozik, “PbTe colloidal nanocrystals: Synthesis, characterization, and multiple exciton generation,” J. Am. Chem. Soc., 128, 3241–3247, 2006.
  • [16] W. Lu, J. Fang, K. L. Stokes, and J. Lin, “Shape Evolution and Self Assembly of Monodisperse PbTe Nanocrystals,” J. Am. Chem. Soc., 126, 11798–11799, 2004.
  • [17] L. Yang, M. Tabachnyk, S. L. Bayliss, M. L. Böhm, K. Broch, N. C. Greenham, R. H. Friend, and B. Ehrler, “Solution-Processable Singlet Fission Photovoltaic Devices,” Nano Lett., 15, 354–358, 2015.
  • [18] A. B. Mandale and S. Badrinarayanan, “X-ray photoelectron spectroscopic studies of the semimagnetic semiconductor system Pb1−xMnxTe,” J. Electron Spectros. Relat. Phenomena., 53 (1-2), 87–95, 1990.
  • [19] E. A. Kraut, R. W. Grant, J. R. Waldrop, and S. P. Kowalczyk, “Semiconductor core-level to valence-band maximum binding-energy differences: Precise determination by x-ray photoelectron spectroscopy,” Phys. Rev. B, 28, 1965–1977, 1983.
There are 19 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Tuğba Hacıefendioğlu This is me 0000-0001-5231-5416

Demet Asil 0000-0001-6368-7151

Project Number 115F187 and 117E787
Publication Date November 25, 2021
Published in Issue Year 2021 Volume: 16 Issue: 2

Cite

IEEE T. Hacıefendioğlu and D. Asil, “PbTe Quantum Dots and Engineering of the Energy Band Alignment in Photovoltaic Applications”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 16, no. 2, pp. 434–443, 2021, doi: 10.29233/sdufeffd.891908.