Research Article
BibTex RIS Cite

EPR Hyperfine Structures of Cation and Anion Radicals of Triafulvalene, Pentafulvalene and Heptafulvalene; A Theoretical Study

Year 2022, Volume: 17 Issue: 1, 138 - 145, 27.05.2022
https://doi.org/10.29233/sdufeffd.1068324

Abstract

In this study, the EPR hyperfine coupling constants and spin densities of cation and anion radicals of triafulvalene, pentafulvalene and heptafulvalene were calculated by using DFT method with B3LYP functional at LanL2DZ level. The hyperfine structures formed EPR spectra of all the cation and anion radicals were determined. It was seen that in the cation cases of triafulvalene and heptafulvalene spin density is delocalized throughout the molecule whereas in their anion cases it is essentially localized on only a single ring. The reason of this distribution of the unpaired spin was investigated by their Natural Bond Orbital (NBO) and Mullikan charge analyses. These analyses showed that in the anion cases of the molecules the interaction energies between the interring C-C bond and the ring C-C bonds are different for both the two rings and one of them is quite higher than the other. The simulated EPR spectra obtained by EPR Simulator software program were harmoniously given with together their experimental spectra.

References

  • M. D. SeviIla, S. H. Fiajser, G. Vincow, and H. J. Dauben Jr., “Heptafulvalene cation and anion radicals,” J. Am. Chem. Soc., 91, 4139-4142, 1969.
  • A. Toyota and T. Nakajima, “The ground-state electronic properties of cation and anion radicals of heptafulvalene, pentafulvalene and triafulvalene,” Chem. Phys. Lett., 6, 144-146, 1970.
  • T. Wang, F. M. Tang, and Y. F. Wu, “A combined EPR and DFT study of the overcrowded aromatic radical cations from Friedel–Crafts alkylation reactions,” J. Mol. Struct., 1002, 128-134, 2011.
  • Bo-Z. Chen and Ming-B. Huang, "Hyperfine structure in HCS and related radicals: a theoretical” Chem. Phys. Lett., 308, 256-262, 1999.
  • N. Ishii and T. Shimizu, “Density-functional-theory calculations of isotropic hyperfine coupling constants of radicals,” Chem. Phys. Lett., 225, 462-466, 1994.
  • L. Hermosilla, G. Vega, C. Sieiro, and P. Calle, “DFT calculations of isotropic hyperfine coupling constants of nitrogen aromatic radicals: the challenge of nitroxide radicals,” J. Chem. Theory Comput. 7, 169-179, 2011.
  • M. J. Frisch et. al., Gaussian 09 Revision D.01, Gaussian Inc, Pittsburgh PA 2009.
  • A. Frish, A. B. Nielsen and A.J. Holder, Gauss View User Manual, Gaussian Inc, Pittsburg PA 2001.
  • Y. Wang, G. Fu, Y. Zhang, X. Xu, and H. Wan, “O-atom transfer reaction from N2O to CO: A theoretical investigation,” Chem. Phys. Lett., 475, 202-207, 2009.
  • D. Tiana, C. Zenga, H. Wanga, Xianming Chenga, Y. Zhenga, C. Xiangd, K. Lia, and X. Zhu, “Effect of transition metal Fe adsorption on CeO2(110) surface in themethane activation and oxygen vacancy formation: a density functional theory study,” Appl. Surf. Sci., 416, 547-564, 2017.
  • P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev., 136, b864-b871, 1964.
  • W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev., 140, a1133–a1138, 1965.
  • A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior,” Phys. Rev. A., 38, 3098-3100, 1988.
  • C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Phys. Rev. B., 37,785-789, 1988.
  • S. Nardali, F. Ucun, and M. Karakaya, “Calculated hyperfine coupling constants for 5,5-dimethyl-1-pyrroline N-oxide radical products in water and benzene,” Russian J. Phys. Chem. A, 91, 2137-2148, 2017.
  • F. Ucun and S. G. Aydın, “Calculated optimized structures and hyperfine coupling constants of some radical adducts of α-phenyl-N-tert-buthyl nitrone in water and benzene solutions,” J. Organomet. Chem., 759, 27-32, 2014.
  • https://www.eprsimulator.org/isotropic.html
  • A. G. Davies, J. R. M. Giles, and J. Lusztyk, “The electron spin resonance spectrum of the fulvalene radical anion,” Royal Soc. Chem., 747-749, 1981.
  • W. Yang and R. G. Parr, “Hardness, softness and the Fukui function in the electronic theory of metals and catalysis,” Proc. Natl. Acad. Sci., 82, 6723–6726, 1985.

Triafulvalen, Pentafulvalen ve Heptafulvalenin Katyon ve Anyon Radikallerinin EPR Aşırı İnce-yapı Yapıları: Bir Teorik Çalışma

Year 2022, Volume: 17 Issue: 1, 138 - 145, 27.05.2022
https://doi.org/10.29233/sdufeffd.1068324

Abstract

Bu çalışmada triafulvalen, pentafulvalen ve heptafulvalen moleküllerinin katyon ve anyon radikallerinin EPR aşırı ince-yapı çiftlenim sabitleri ve spin yoğunlukları, B3LYP fonksiyonelli DFT ile LanL2DZ seviyesinde hesaplandı. Bütün katyon ve anyon radikallerinin EPR spektrumlarını oluşturan aşırı ince-yapı yapıları belirlendi. Triafulvalen ve heptafulvalenin anyon durumlarında spin yoğunluğu, hemen hemen yalnızca tekil bir halka üzerinde bulunurken onların katyon durumlarında bütün bir molekül üzerinde dağılmış olarak gözlendi. Çiftlenmemiş spinin bu dağılımının nedeni, onların Doğal Bağ Orbital (NBO) ve Mulliken yük analizleri ile araştırıldı. Bu analizler, moleküllerin anyon durumlarında halkalar arası C-C bağının halka C-C bağları arasındaki etkileşme enerjilerini her iki halka için farklı ve birini diğerine kıyasla oldukça yüksek gösterdi. EPR Simulator yazılım programı ile elde edilmiş simülasyon EPR spektrumları, deneysel spektrumlarla birlikte uyum içerisinde verildi.

References

  • M. D. SeviIla, S. H. Fiajser, G. Vincow, and H. J. Dauben Jr., “Heptafulvalene cation and anion radicals,” J. Am. Chem. Soc., 91, 4139-4142, 1969.
  • A. Toyota and T. Nakajima, “The ground-state electronic properties of cation and anion radicals of heptafulvalene, pentafulvalene and triafulvalene,” Chem. Phys. Lett., 6, 144-146, 1970.
  • T. Wang, F. M. Tang, and Y. F. Wu, “A combined EPR and DFT study of the overcrowded aromatic radical cations from Friedel–Crafts alkylation reactions,” J. Mol. Struct., 1002, 128-134, 2011.
  • Bo-Z. Chen and Ming-B. Huang, "Hyperfine structure in HCS and related radicals: a theoretical” Chem. Phys. Lett., 308, 256-262, 1999.
  • N. Ishii and T. Shimizu, “Density-functional-theory calculations of isotropic hyperfine coupling constants of radicals,” Chem. Phys. Lett., 225, 462-466, 1994.
  • L. Hermosilla, G. Vega, C. Sieiro, and P. Calle, “DFT calculations of isotropic hyperfine coupling constants of nitrogen aromatic radicals: the challenge of nitroxide radicals,” J. Chem. Theory Comput. 7, 169-179, 2011.
  • M. J. Frisch et. al., Gaussian 09 Revision D.01, Gaussian Inc, Pittsburgh PA 2009.
  • A. Frish, A. B. Nielsen and A.J. Holder, Gauss View User Manual, Gaussian Inc, Pittsburg PA 2001.
  • Y. Wang, G. Fu, Y. Zhang, X. Xu, and H. Wan, “O-atom transfer reaction from N2O to CO: A theoretical investigation,” Chem. Phys. Lett., 475, 202-207, 2009.
  • D. Tiana, C. Zenga, H. Wanga, Xianming Chenga, Y. Zhenga, C. Xiangd, K. Lia, and X. Zhu, “Effect of transition metal Fe adsorption on CeO2(110) surface in themethane activation and oxygen vacancy formation: a density functional theory study,” Appl. Surf. Sci., 416, 547-564, 2017.
  • P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev., 136, b864-b871, 1964.
  • W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev., 140, a1133–a1138, 1965.
  • A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior,” Phys. Rev. A., 38, 3098-3100, 1988.
  • C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Phys. Rev. B., 37,785-789, 1988.
  • S. Nardali, F. Ucun, and M. Karakaya, “Calculated hyperfine coupling constants for 5,5-dimethyl-1-pyrroline N-oxide radical products in water and benzene,” Russian J. Phys. Chem. A, 91, 2137-2148, 2017.
  • F. Ucun and S. G. Aydın, “Calculated optimized structures and hyperfine coupling constants of some radical adducts of α-phenyl-N-tert-buthyl nitrone in water and benzene solutions,” J. Organomet. Chem., 759, 27-32, 2014.
  • https://www.eprsimulator.org/isotropic.html
  • A. G. Davies, J. R. M. Giles, and J. Lusztyk, “The electron spin resonance spectrum of the fulvalene radical anion,” Royal Soc. Chem., 747-749, 1981.
  • W. Yang and R. G. Parr, “Hardness, softness and the Fukui function in the electronic theory of metals and catalysis,” Proc. Natl. Acad. Sci., 82, 6723–6726, 1985.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Fatih Ucun 0000-0001-7464-7788

Sadun Küçük 0000-0001-8757-9032

Publication Date May 27, 2022
Published in Issue Year 2022 Volume: 17 Issue: 1

Cite

IEEE F. Ucun and S. Küçük, “Triafulvalen, Pentafulvalen ve Heptafulvalenin Katyon ve Anyon Radikallerinin EPR Aşırı İnce-yapı Yapıları: Bir Teorik Çalışma”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 17, no. 1, pp. 138–145, 2022, doi: 10.29233/sdufeffd.1068324.