Research Article
BibTex RIS Cite

Beta Fonksiyonu için Sayısal Değerlendirme Yöntemleri

Year 2022, Volume: 17 Issue: 2, 288 - 302, 25.11.2022
https://doi.org/10.29233/sdufeffd.1128768

Abstract

Bu çalışmada, hesaplamalı matematik ve fizikte karşılaşılan beta fonksiyonu analiz edilmiştir. Bu fonksiyonun doğru değerlendirilmesi, kuantum mekaniksel hesaplamalardaki diğer matematiksel fonksiyonların doğruluğunu da etkilemektedir. Özellikle son yıllarda, sıfır ve negatif p ve q tam sayıları için beta fonksiyonu ile ilgili çalışmalara ilgi duyulmaktadır. Bu çalışma, beta fonksiyonunun neutrix limitlerini göz önünde bulundurarak, özellikle negatif p ve q tam sayılarında beta fonksiyonunun sayısal hesaplaması için yeni bağıntılar sunmaktadır. Ayrıca pozitif p ve q tam sayı değerleri için de beta fonksiyonunun tanımı dikkate alınarak, fonksiyonun tüm tam sayı değerlerinde hesaplanması için bir algoritma oluşturulmuştur. Son olarak, yeni yineleme bağıntılarımız ve algoritmamız yardımıyla elde edilen sayısal sonuçlar sunulmuştur.

References

  • M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Dover, New York, 1972.
  • F. Qi, “An improper integral, the beta function, the Wallis ratio, and the Catalan numbers,” Probl. Anal. Issues Anal., 7 (25), 104-115, 2018.
  • B. Fisher, A. Kilicman, D. Nicholas, “On the beta function and the neutrix product of distributions,” Integral Transform Spec. Funct., 7 (1-2), 35-42, 1998.
  • F. Qi, C. J. Huang, “Computing sums in terms of beta, polygamma, and Gauss hypergeometric functions,” Racsam. Rev. R. Acad. A, 114 (191), 1-9, 2020.
  • F. Al-Sirehy, B. Fisher, “Evaluation of the beta function,” Int. J. Appl. Math. (Sofia), 26 (1), 59-70, 2013.
  • J. Choi, H. M. Srivastava, “Integral representations for the gamma function, the beta function, and the double gamma function,” Integral Transform Spec. Funct., 20 (11), 859–869, 2009.
  • F. Qi, “Parametric integrals, the Catalan numbers, and the beta function”, Elem. Math., 72 (3), 103-110, 2017.
  • P. Vellaisamy, A. Zeleke, “Probabilistic proofs of some beta-function identities,” J. Integer Seq., 22 (19.6.6), 1-10, 2019.
  • R. Askey, “Ramanujan's extensions of the gamma and beta functions”, Am. Math. Mon., 87 (5), 346-359, 1980.
  • G. Veneziano, “Construction of a crossing-simmetric, Regge-behaved amplitude for linearly rising trajectories,” II Nuovo Cimento A, 57 (1), 190-197, 1968.
  • M. A. Per, A. J. Segui, “Encoding the scaling of the cosmological variables with the Euler beta function,” Int. J. Mod. Phys. A, 20 (20n21), 4917-4924, 2005.
  • A. L. Kholodenko, “New strings for old Veneziano amplitudes I. Analytical treatment,” J. Geom. Phys., 55, 50–74, 2005.
  • A. L. Kholodenko, “New models for Veneziano amplitudes: combinatorial, symplectic and supersymmetric aspects,” Int. J. Geom. Methods Mod. Phys., 2 (4), 563–584, 2005.
  • Z. Zhang, J. Wang, “Some properties of the (q, h) binomial coefficients,” J. Phys. A Math. Gen., 33, 7653–7658, 2000.
  • Т. Ozdogan, M. Orbay, “Cartesian expressions for surface and regular solid spherical harmonics using binomial coefficients and its use in the evaluation of multicenter integrals,” Czech. J. Phys., 52, 1297–1302, 2002.
  • Т. C. Lim, “Application of binomial coefficients in representing central difference solution to a class of PDE arising in chemistry,” J. Math. Chem., 39, 177–186, 2006.
  • R. Sprugnoli, “Negation of binomial coefficients,” Discrete Math., 308, 5070–5077, 2008.
  • N. Yükçü, E. Öztekin, “Strategies on the evaluation of binomial coefficients,” Compt. Math. and Math. Phys., 53, 1-7, 2013.
  • C. A. Wahl, E. P. Cade, C. C. Roothaan, “Study of two-center integrals useful in calculations on molecular structure. V. General methods for diatomic integrals applicable digital computers,” J. Chem. Phys., 41 (9), 2578-2599, 1964.
  • Harris J. Silverstone, “Series expansion for two-center noninteger-n Coulomb Integrals,” J. Chem. Phys., 46 (11), 4377-4380, 1967.
  • E. J. Weniger, J. Grotendorst, E. O. “Steinborn, Unified analytical treatment of overlap, two-center nuclear attraction and Coulomb integrals of B functions via the Fourier-transform method,” Phys. Rev. A, 33 (6), 3688-3705, 1986.
  • I. I. Guseinov, “On the evaluation of multielectron molecular integrals over Slater-type orbitals using binomial coefficients,” J. Mol. Struct. (Theochem), 336 (1), 17-20, 1995.
  • S. M. Mekelleche, A. Baba-Ahmed, “Calculation of the one-electron two-center integrals over Slater-type orbitals by means of the ellipsoidal coordinates method,” Int. J. Quantum Chem., 63, 843-852, 1997.
  • V. Magnasco, A. Rapallo, “New translation method for STOs and its application to calculation of two-center two-electron integrals,” Int. J. Quantum Chem., 79 (2), 91-100, 2000.
  • M. Yavuz, N. Yükçü, E. Öztekin, H. Yılmaz, S. Döndür, “On the evaluation overlap integrals with the same and different screening parameters over Slater type orbitals via the Fourier-transform method,” Commun. Theor. Phys., 43 (1), 151-158, 2005.
  • H. J. Silverstone, “Two-Center noninteger-n overlap, Coulomb, and kinetic-energy integrals by numerical contour integration,” J. Phys. Chem. A, 118 (51), 11971-11974, 2014.
  • N. Yükçü, E. Öztekin, “Reducing and Solving Electric Multipole Moment Integrals,” Adv. Quantum Chem., 67 (9), 231-242, 2013.
  • G. B. Arfken, H. J. Weber, Mathematical Methods for Physics, Elsevier Academic Press, USA, 2005.
  • M. L. Boas, Mathematical Methods in the Physical Sciences, second ed., John Wiley & Sons, Canada, 1983.
  • J. G. van der Corput, “Introduction to the neutrix calculus,” J. Anal. Math., 7, 291-398, 1959.
  • A. Salem, “The neutrix limit of the q-Gamma function and its derivatives,” Appl. Math. Lett., 23, 1262-1268, 2010.
  • D. S. Jones, “Hadamard’s Finite Part,” Math. Methods Appl. Sci., 19, 1017-1052, 1996.
  • E. Özçağ, İ. Ege, H. Gürçay, “An extension of the incomplete beta function for negative integers,” J. Math. Anal. Appl., 338, 984–992, 2008.
  • N. Shang, A. Li, Z. Sun, H. Qin, “A note on the beta function and some properties of its partial derivatives,” IAENG Int. J. Appl. Math., 44 (4), 200-205, 2014.
  • M. Lin, B. Fisher, S. Orankitjaroen, “Some results on the beta function and the incomplete beta function,” Asian-Eur. J. Math., 8 (3), 1550048, 2015.
  • A. Li, Z. Sun, H. Qin, “The algorithm and application of the beta function and its partial derivatives,” Eng. Lett., 23 (3), 140-144, 2015.
  • A. D. Polyanin, A V. Manzhirov, Handbook of Mathematics for Engineers and Scientists, Taylor & Francis Group, Boca Raton, 2007.
  • P. Henrici, Applied and Computational Complex Analysis, Vol. 2, Wiley, New York, 1977.
  • S. Wolfram, The Mathematica Book, fifth ed., Addison-Wesley, USA, 1998.
  • F. Y. Wang, Physics with Maple: The Computer Algebra Resource for Mathematical Methods in Physics, Wiley-VCH, Weinheim, 2006.
  • A. Gilat, Matlab: An Introduction with Applications, Wiley, New York, 2004.

The Numerical Evaluation Methods for Beta Function

Year 2022, Volume: 17 Issue: 2, 288 - 302, 25.11.2022
https://doi.org/10.29233/sdufeffd.1128768

Abstract

In this study, the beta function that is encountered in computational mathematics and physics is analyzed. The correct evaluation of this function also affects the accuracy of other mathematical functions in quantum mechanical calculations. Especially in recent years, there is an interest in studies related to the beta function for zero and negative p and q integers. This study, considering the neutrix limits of the beta function, presents new relations for the numerical computation of the beta function, especially for negative integers p and q. In addition, taking into account the definition of the beta function for positive p and q integer values, an algorithm is created to calculate the function for all integer values. Finally, numerical results obtained with the help of our new recurrence relations and algorithm are presented.

References

  • M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Dover, New York, 1972.
  • F. Qi, “An improper integral, the beta function, the Wallis ratio, and the Catalan numbers,” Probl. Anal. Issues Anal., 7 (25), 104-115, 2018.
  • B. Fisher, A. Kilicman, D. Nicholas, “On the beta function and the neutrix product of distributions,” Integral Transform Spec. Funct., 7 (1-2), 35-42, 1998.
  • F. Qi, C. J. Huang, “Computing sums in terms of beta, polygamma, and Gauss hypergeometric functions,” Racsam. Rev. R. Acad. A, 114 (191), 1-9, 2020.
  • F. Al-Sirehy, B. Fisher, “Evaluation of the beta function,” Int. J. Appl. Math. (Sofia), 26 (1), 59-70, 2013.
  • J. Choi, H. M. Srivastava, “Integral representations for the gamma function, the beta function, and the double gamma function,” Integral Transform Spec. Funct., 20 (11), 859–869, 2009.
  • F. Qi, “Parametric integrals, the Catalan numbers, and the beta function”, Elem. Math., 72 (3), 103-110, 2017.
  • P. Vellaisamy, A. Zeleke, “Probabilistic proofs of some beta-function identities,” J. Integer Seq., 22 (19.6.6), 1-10, 2019.
  • R. Askey, “Ramanujan's extensions of the gamma and beta functions”, Am. Math. Mon., 87 (5), 346-359, 1980.
  • G. Veneziano, “Construction of a crossing-simmetric, Regge-behaved amplitude for linearly rising trajectories,” II Nuovo Cimento A, 57 (1), 190-197, 1968.
  • M. A. Per, A. J. Segui, “Encoding the scaling of the cosmological variables with the Euler beta function,” Int. J. Mod. Phys. A, 20 (20n21), 4917-4924, 2005.
  • A. L. Kholodenko, “New strings for old Veneziano amplitudes I. Analytical treatment,” J. Geom. Phys., 55, 50–74, 2005.
  • A. L. Kholodenko, “New models for Veneziano amplitudes: combinatorial, symplectic and supersymmetric aspects,” Int. J. Geom. Methods Mod. Phys., 2 (4), 563–584, 2005.
  • Z. Zhang, J. Wang, “Some properties of the (q, h) binomial coefficients,” J. Phys. A Math. Gen., 33, 7653–7658, 2000.
  • Т. Ozdogan, M. Orbay, “Cartesian expressions for surface and regular solid spherical harmonics using binomial coefficients and its use in the evaluation of multicenter integrals,” Czech. J. Phys., 52, 1297–1302, 2002.
  • Т. C. Lim, “Application of binomial coefficients in representing central difference solution to a class of PDE arising in chemistry,” J. Math. Chem., 39, 177–186, 2006.
  • R. Sprugnoli, “Negation of binomial coefficients,” Discrete Math., 308, 5070–5077, 2008.
  • N. Yükçü, E. Öztekin, “Strategies on the evaluation of binomial coefficients,” Compt. Math. and Math. Phys., 53, 1-7, 2013.
  • C. A. Wahl, E. P. Cade, C. C. Roothaan, “Study of two-center integrals useful in calculations on molecular structure. V. General methods for diatomic integrals applicable digital computers,” J. Chem. Phys., 41 (9), 2578-2599, 1964.
  • Harris J. Silverstone, “Series expansion for two-center noninteger-n Coulomb Integrals,” J. Chem. Phys., 46 (11), 4377-4380, 1967.
  • E. J. Weniger, J. Grotendorst, E. O. “Steinborn, Unified analytical treatment of overlap, two-center nuclear attraction and Coulomb integrals of B functions via the Fourier-transform method,” Phys. Rev. A, 33 (6), 3688-3705, 1986.
  • I. I. Guseinov, “On the evaluation of multielectron molecular integrals over Slater-type orbitals using binomial coefficients,” J. Mol. Struct. (Theochem), 336 (1), 17-20, 1995.
  • S. M. Mekelleche, A. Baba-Ahmed, “Calculation of the one-electron two-center integrals over Slater-type orbitals by means of the ellipsoidal coordinates method,” Int. J. Quantum Chem., 63, 843-852, 1997.
  • V. Magnasco, A. Rapallo, “New translation method for STOs and its application to calculation of two-center two-electron integrals,” Int. J. Quantum Chem., 79 (2), 91-100, 2000.
  • M. Yavuz, N. Yükçü, E. Öztekin, H. Yılmaz, S. Döndür, “On the evaluation overlap integrals with the same and different screening parameters over Slater type orbitals via the Fourier-transform method,” Commun. Theor. Phys., 43 (1), 151-158, 2005.
  • H. J. Silverstone, “Two-Center noninteger-n overlap, Coulomb, and kinetic-energy integrals by numerical contour integration,” J. Phys. Chem. A, 118 (51), 11971-11974, 2014.
  • N. Yükçü, E. Öztekin, “Reducing and Solving Electric Multipole Moment Integrals,” Adv. Quantum Chem., 67 (9), 231-242, 2013.
  • G. B. Arfken, H. J. Weber, Mathematical Methods for Physics, Elsevier Academic Press, USA, 2005.
  • M. L. Boas, Mathematical Methods in the Physical Sciences, second ed., John Wiley & Sons, Canada, 1983.
  • J. G. van der Corput, “Introduction to the neutrix calculus,” J. Anal. Math., 7, 291-398, 1959.
  • A. Salem, “The neutrix limit of the q-Gamma function and its derivatives,” Appl. Math. Lett., 23, 1262-1268, 2010.
  • D. S. Jones, “Hadamard’s Finite Part,” Math. Methods Appl. Sci., 19, 1017-1052, 1996.
  • E. Özçağ, İ. Ege, H. Gürçay, “An extension of the incomplete beta function for negative integers,” J. Math. Anal. Appl., 338, 984–992, 2008.
  • N. Shang, A. Li, Z. Sun, H. Qin, “A note on the beta function and some properties of its partial derivatives,” IAENG Int. J. Appl. Math., 44 (4), 200-205, 2014.
  • M. Lin, B. Fisher, S. Orankitjaroen, “Some results on the beta function and the incomplete beta function,” Asian-Eur. J. Math., 8 (3), 1550048, 2015.
  • A. Li, Z. Sun, H. Qin, “The algorithm and application of the beta function and its partial derivatives,” Eng. Lett., 23 (3), 140-144, 2015.
  • A. D. Polyanin, A V. Manzhirov, Handbook of Mathematics for Engineers and Scientists, Taylor & Francis Group, Boca Raton, 2007.
  • P. Henrici, Applied and Computational Complex Analysis, Vol. 2, Wiley, New York, 1977.
  • S. Wolfram, The Mathematica Book, fifth ed., Addison-Wesley, USA, 1998.
  • F. Y. Wang, Physics with Maple: The Computer Algebra Resource for Mathematical Methods in Physics, Wiley-VCH, Weinheim, 2006.
  • A. Gilat, Matlab: An Introduction with Applications, Wiley, New York, 2004.
There are 41 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics, Mathematical Sciences
Journal Section Makaleler
Authors

Sılay Aytaç Yükçü 0000-0003-2831-7467

Publication Date November 25, 2022
Published in Issue Year 2022 Volume: 17 Issue: 2

Cite

IEEE S. A. Yükçü, “The Numerical Evaluation Methods for Beta Function”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 17, no. 2, pp. 288–302, 2022, doi: 10.29233/sdufeffd.1128768.