Research Article
BibTex RIS Cite

CO2 Reaksiyonlu Portland’ın Radyasyon Özelliklerinin İncelenmesi

Year 2022, Volume: 17 Issue: 2, 391 - 404, 25.11.2022
https://doi.org/10.29233/sdufeffd.1153537

Abstract

Bu çalışmada, çimento üretiminin fırınlama esnasında elde edilebilecek CO2 reaksiyonlu Portland'ın radyasyon özelliklerini araştırdık. CO2 ile reaksiyona giren Portland çimentosunun, kimyasal süreç yoluyla CaCO3 üretilmesi neticesinde, yoğunluğu değişir. Portland çimentosunun, CO2 yakalama oranı sıfır iken yoğunluk 2.3 g/cm3, CO2 yakalama oranı %100 iken yoğunluk 2.705 g/cm3 olmaktadır. Radyasyon koruma özellikleri FLUKA simülasyon programı kullanılarak araştırıldı. CO2 reaksiyonlu Portland'ın radyasyon kalkanı özelliklerini araştırmak için dört tip ışın demeti (fotonlar, elektronlar, protonlar ve nötronlar) kullanıldı. Bu ışın demetleri, leptonik ve hadronik etkileşimleri açıklamak için kullanıldı. Bu çalışmada CO2 reaksiyonlu portlandın, radyasyon uzunluğu ve yoğunluğu hesaplanıp sunuldu. Farklı demet enerjilerine sahip dört demetin hedef portland üzerindeki enerji birikimleri, çimentonun yoğunluk değişimi dikkate alınarak incelendi. CO2 reaksiyonlu Portland'ın geleneksel Portland malzemelerden daha verimli radyasyon kalkanlama özelliğine sahip olduğu bulundu. Portland'ın karbonizasyonu, çok yavaş bir işlem olan CO2 difüzyon işlemi ile değil daha hızlı ve daha elverişli bir işlem olan püskürtme yöntemiyle fırın işlemi sırasında gerçekleştirilecektir.

References

  • A.Yurt, B. Çavuşoğlu, and T. Günay, “Evaluation of awareness on radiation protection and knowledge about radiological examinations in healthcare professionals who use ıonized radiation at work,” Molecular Imaging and Radionuclide Therap., 23 (2), 48-53, 2014.
  • E. Arıkan and H. Aksakal ”Positron source investigation by using CLIC drive beam for Linac-LHC based e+p collider” Nucl. Instrum. Meth. A, 683, 63–70, 2012.
  • G. F. Knoll, Radiation Detection and Measuements, Fourth Edition, John Wiley & Sons, Inc, 2000, 29-63.
  • D. M. Wade and D. J. Drake, “A brief review of modern uses of scattering techniques,” Georgia Journal of Science, 77 (2), 7, 2019.
  • C. Sunil, “Radiation shielding analysis of the small-angle X-ray scattering flight tube end station of APS upgrade Project,” Nucl. Instrum. Meth. B, 484, 48–58, 2020.
  • M. H. A. Mhareb, et al., “Investigation of photon, neutron and proton shielding features of H3BO3-ZnO- Na2O-BaO glass system,” Nucl. Instrum. Meth. B, 53 (2021), 949–959, 2020.
  • L. K. Abidoye and D. B. Das. “Carbon storage in portland cement mortar: Influences of hydration stage, carbonation time and aggregate characteristics,” Clean Technologies, 3, 563–580, 2021.
  • M. A. Sanjuan, et al., “Carbon dioxide uptake by mortars and concretes made with Portuguese Cements,” Appl. Sci., 10, 646, 2020.
  • S.M.J. Mortazavi, et al., “Production of an economic high-density concrete for shielding megavoltage radiotherapy rooms and nuclear reactors,” Iran. J. Radiat. Res. 5 (3), 143-146, 2007.
  • The official FLUKA site, (2000-2022) [Online]. Available: http://www.fluka.org/fluka.php
  • A. Ferrari , P.R. Sala, A. Fassò, and J. Ranft, ” FLUKA: A Multi-Particle Transport Code,” Technical report, CERN, Geneva, ” 2005.
  • U. Ersoy and G. Özcebe, Betonarme I.. Evrim Publisher, Turkey, ISBN: 978-975-503-231-3, 2015, pp. 3-6.
  • S. Yıldırım, “Investigation and examination of the behavior of different aluminum alloys against Cs-137 Gamma radiozotopic resource,” Dept. Nuclear Research Division, Istanbul Techical Univ., Istanbul, Turkey, 2018.
  • From the Turkish Atomic Energy Agency, (2018, May 29). Official newspaper (Number: 30435) [Online] Available: https://www.resmigazete.gov.tr/eskiler/2018/05/20180529-17.htm
  • D. J. Niedźwiedzka, K Gibas, A. M. Brandt, M. A. Glinicki, M. Dąbrowski, and P. Denis, “Mineral composition of heavy aggregates for nuclear shielding concrete in relation to alkali-silica reaction,” Procedia Engineering, 108, 162–169, 2015.
  • İ. Şanal, “Significance of concrete production in terms of carbondioxide emissions: social and environmental impacts,” Journal of Politeknik, 21 (2), 369–378, 2018.
  • S. H. Han, Y. Jun, T. Y. Shin, and J. H. Kim, “CO2 curing efficiency for cement paste and mortars produced by a low water-to-cement ratio,” Materials, 13, 3883, 2020.
  • M. Natesan, S. Smith, K. Humphreys, and Y. Kaya, “The Cement Industry and Global Climate Change: Current and Potential Future Cement Industry CO2 Emissions,” Greenhouse Gas Control Technologies 6th International Conference. Oxford: Pergamon, 995–1000, 2003.
  • M. A. Nisbet, M. L. Marceau, and M. G. VanGeem, “Environmental Life Cycle Inventory of Portland Cement Concrete”. National Ready Mixed Concrete Association. Portland Cement Association R&D Serial No. 2137a, 2002.
  • M.Gupta; et al. “Calculation of radiation length in materials,” Physics Letters B, 592 (1–4), 1–5, 2010.

Investigation of Radiation Properties of CO2 Reacted Portland

Year 2022, Volume: 17 Issue: 2, 391 - 404, 25.11.2022
https://doi.org/10.29233/sdufeffd.1153537

Abstract

In this study we explored the radiation properties of CO2-reacted Portland which take place in kiln process of cement production. The use of CO2 can change Portland density via chemical process to obtain CaCO3. When the CO2 capture rate of Portland cement is zero, the density is 2.3 g/cm3, while the CO2 capture rate is 100%, the density is reached to 2.705 g/cm3. The radiation shielding properties were explored using FLUKA code. To define the radiation shielding properties of the CO2-reacted Portland, four types of beams (photons, electrons, protons and neutrons) were used. These beams have been used to explain the leptonic and hadronic interactions. The CO2-reacted Portland radiation length and density have been calculated and presented. The energy depositions of four beams with various beam energies were examined by considering density variation of the cement. It has been found that CO2-reacted Portland has more efficient radiation shielding than traditional Portland materials. The carbonization of Portland will be carried out during the kiln process, not by the CO2 diffusion process, which is a very slow process, but by the faster and more convenient spray method.

References

  • A.Yurt, B. Çavuşoğlu, and T. Günay, “Evaluation of awareness on radiation protection and knowledge about radiological examinations in healthcare professionals who use ıonized radiation at work,” Molecular Imaging and Radionuclide Therap., 23 (2), 48-53, 2014.
  • E. Arıkan and H. Aksakal ”Positron source investigation by using CLIC drive beam for Linac-LHC based e+p collider” Nucl. Instrum. Meth. A, 683, 63–70, 2012.
  • G. F. Knoll, Radiation Detection and Measuements, Fourth Edition, John Wiley & Sons, Inc, 2000, 29-63.
  • D. M. Wade and D. J. Drake, “A brief review of modern uses of scattering techniques,” Georgia Journal of Science, 77 (2), 7, 2019.
  • C. Sunil, “Radiation shielding analysis of the small-angle X-ray scattering flight tube end station of APS upgrade Project,” Nucl. Instrum. Meth. B, 484, 48–58, 2020.
  • M. H. A. Mhareb, et al., “Investigation of photon, neutron and proton shielding features of H3BO3-ZnO- Na2O-BaO glass system,” Nucl. Instrum. Meth. B, 53 (2021), 949–959, 2020.
  • L. K. Abidoye and D. B. Das. “Carbon storage in portland cement mortar: Influences of hydration stage, carbonation time and aggregate characteristics,” Clean Technologies, 3, 563–580, 2021.
  • M. A. Sanjuan, et al., “Carbon dioxide uptake by mortars and concretes made with Portuguese Cements,” Appl. Sci., 10, 646, 2020.
  • S.M.J. Mortazavi, et al., “Production of an economic high-density concrete for shielding megavoltage radiotherapy rooms and nuclear reactors,” Iran. J. Radiat. Res. 5 (3), 143-146, 2007.
  • The official FLUKA site, (2000-2022) [Online]. Available: http://www.fluka.org/fluka.php
  • A. Ferrari , P.R. Sala, A. Fassò, and J. Ranft, ” FLUKA: A Multi-Particle Transport Code,” Technical report, CERN, Geneva, ” 2005.
  • U. Ersoy and G. Özcebe, Betonarme I.. Evrim Publisher, Turkey, ISBN: 978-975-503-231-3, 2015, pp. 3-6.
  • S. Yıldırım, “Investigation and examination of the behavior of different aluminum alloys against Cs-137 Gamma radiozotopic resource,” Dept. Nuclear Research Division, Istanbul Techical Univ., Istanbul, Turkey, 2018.
  • From the Turkish Atomic Energy Agency, (2018, May 29). Official newspaper (Number: 30435) [Online] Available: https://www.resmigazete.gov.tr/eskiler/2018/05/20180529-17.htm
  • D. J. Niedźwiedzka, K Gibas, A. M. Brandt, M. A. Glinicki, M. Dąbrowski, and P. Denis, “Mineral composition of heavy aggregates for nuclear shielding concrete in relation to alkali-silica reaction,” Procedia Engineering, 108, 162–169, 2015.
  • İ. Şanal, “Significance of concrete production in terms of carbondioxide emissions: social and environmental impacts,” Journal of Politeknik, 21 (2), 369–378, 2018.
  • S. H. Han, Y. Jun, T. Y. Shin, and J. H. Kim, “CO2 curing efficiency for cement paste and mortars produced by a low water-to-cement ratio,” Materials, 13, 3883, 2020.
  • M. Natesan, S. Smith, K. Humphreys, and Y. Kaya, “The Cement Industry and Global Climate Change: Current and Potential Future Cement Industry CO2 Emissions,” Greenhouse Gas Control Technologies 6th International Conference. Oxford: Pergamon, 995–1000, 2003.
  • M. A. Nisbet, M. L. Marceau, and M. G. VanGeem, “Environmental Life Cycle Inventory of Portland Cement Concrete”. National Ready Mixed Concrete Association. Portland Cement Association R&D Serial No. 2137a, 2002.
  • M.Gupta; et al. “Calculation of radiation length in materials,” Physics Letters B, 592 (1–4), 1–5, 2010.
There are 20 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics, Chemical Engineering
Journal Section Makaleler
Authors

Hüsnü Aksakal 0000-0001-9470-8728

Vildan Çinğili 0000-0003-3133-5404

Publication Date November 25, 2022
Published in Issue Year 2022 Volume: 17 Issue: 2

Cite

IEEE H. Aksakal and V. Çinğili, “Investigation of Radiation Properties of CO2 Reacted Portland”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 17, no. 2, pp. 391–404, 2022, doi: 10.29233/sdufeffd.1153537.