Research Article
BibTex RIS Cite

πD^* ¯D^* Üç Mezon Sisteminin Faddeev Denkleminin Sabit Merkez Yaklaşıklığı Yöntemi ile İncelenmesi

Year 2024, , 161 - 166, 23.08.2024
https://doi.org/10.19113/sdufenbed.1426362

Abstract

Hadron fiziğinin teorisi kuantum renk dinamiğidir. Kuantum renk dinamiğinde güçlü çiftlenim sabiti orta ve düşük enerji bölgesinde neredeyse sonsuza gitmektedir. Bu nedenle kuarklar hadronlar içerisinde hapsolmuşlardır. Kuark hapsinin gerçekleştiği enerji bölgesinde pertürbasyon teorisi kullanılamaz bundan dolayı pertürbatif olmayan yöntemlere ihtiyaç vardır. Kiral pertürbasyon teorisi bu yöntemlerin en güçlülerinden biridir. Bu çalışmada üniter kiral pertürbasyon teorisinde üç mezon durumu araştırıldı. πD^* ¯D^* üç parçacık molekül durumunu Faddeev Denklemini sabit merkez yaklaşıklığı yöntemini kullanarak çözdüldü. İki parçacık D^* ¯D^*durumunu küme olarak alındı ve üçüncü parçacık olan π (pion) bu kümeden saçtırıldı. Yaptığımız hesapların sonucunda izospin Ι=1 olan, kütlesi 4156 MeV ve genişliği yaklaşık 130 MeV olan yarı bağlı durum elde edildi.

References

  • M. Gell-Mann 1964. A schematic model of baryons and mesons, Phys. Lett. 8, 214–215
  • G. Zweig, 1964. An SU(3) model for strong interaction symmetry and its breaking, 22-101.
  • H.-X. Chen et al. 2016. The hidden-charm pentaquark and tetraquark states, Physics Reports 639 1–121 101
  • R.L. Jaffe, 1977. Multi-Quark hadrons. 2. Methods, Phys. Rev. D 15 281.
  • H. Hogaasen, P. Sorba, 1978. The systematics of possibly narrow quark states with baryon number one, Nuclear Phys. B 145 119.
  • D. Strottman, 1979. Multi-Quark baryons and the MIT bag model, Phys. Rev. D 20, 748–767.
  • H.J. Lipkin, 1987. New possibilities for exotic hadrons: anticharmed strange baryons, Phys. Lett. B 195 484.
  • F. Bissey, F-G. Cao, A. R. Kitson A. I. Signal, D. B. Leinweber, B. G. Lasscock, A. G. Williams, 2007. Gluon flux-tube distribution and linear confinement in baryons, Physical Review D 76, 114512
  • S. Jia, et al., 2017. [Belle Collaboration], Search for the 0−− glueball in Υ (1S) and Υ (2S) decays, Phys. Rev. D 95, 012001.
  • C.-F. Qiao, L. Tang, 2014. Finding the 0−− Glueball, Phys. Rev. Lett. 113, 221601,
  • Feng-Kun Guo, Christoph Hanhart, Ulf-G. Meißner, Qian Wang, Qiang Zhao, and Bing-Song Zou, 2018. Hadronic molecules, Rev. Mod. Phys. 90, 015004.
  • J. Gasser and H. Leutwyler, 1984. Chiral perturbation theory to one loop, Ann. Phys. (N.Y.) 158, 142.
  • G. Ecker, J. Gasser, H. Leutwyler, A. Pich, and E. de Rafael, 1989. Chiral Lagrangians for massive spin 1 fields, Phys. Lett. B 223, 425.
  • U. G. Meissner, 1993. Recent developments in chiral perturbation theory, Rep. Prog. Phys. 56, 903.
  • M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, 1979. QCD and resonance physics. Sum rules, Nucl. Phys. B147, 385
  • L. J. Reinders, H. Rubinstein, and S. Yazaki, 1985. Hadron properties from QCD sum rules, Phys. Rep. 127, 1
  • A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F. Weisskopf, 1974. A New Extended Model of Hadrons Phys. Rev. D 9, 3471
  • Steven Weinberg, 1963. Elementary Particle Theory of Composite Particles, Phys. Rev. 130, 776
  • Y. Nakahara, M. Asakawa, and T. Hatsuda, 1999. Hadronicspectral functions in lattice QCD, Phys. Rev. D 60,091503.
  • K. Sasaki, S. Sasaki, and T. Hatsuda, 2005. Spectral analysis of excited nucleons in lattice QCD with maximum entropy method, Phys. Lett. B 623, 208.
  • S. Basak, R. G. Edwards, G. T. Fleming, K. J. Juge, A. Lichtl, C. Morningstar, D. G. Richards, I. Sato, and S. J. Wallace, 2007. Lattice QCD determination of patterns of excited baryon states, Phys. Rev. D 76, 074504.
  • J. A. Oller, E. Oset, and J. R. Pelaez, 1998. Nonperturbative Approach to Effective Chiral Lagrangians and Meson Interactions, Phys. Rev. Lett. 80, 3452.
  • De Rujula, A., H. Georgi, and S. L. Glashow Molecular, 1977. Charmonium: A New Spectroscopy?, Phys. Rev. Lett. 38, 317.
  • M. Bayar, J. Yamagata-Sekihara, and E. Oset, 2011. The ¯K NN system with chiral dynamics, Phys. Rev. C 84, 015209
  • A. Martínez Torres, E. J. Garzón, E. Oset, and L. R. Dai, 2011. Limits to the fixed center approximation to Faddeev equations: The case of the ϕ(2170) Phys. Rev. D 83, 116002
  • J. Yamagata-Sekihara, J. Nieves, E. Oset, 2011. Couplings in couplet channels versus wave functions in the case of resonances: Application to the two Λ (1405) states, Physical Review D 83, 014003.
  • J. A. Oller, E. Oset, A. Ramos, 2000. Chiral unitary approach to meson-meson and meson-baryon interactions and nuclear applications, Prog. Part. Nucl. Phys. 45 157-242.
  • D. Gamermann and E. Oset, 2007. Axial resonances in the open and hidden charm sectors, Eur. Phys. J. A 33, 119.
  • B. Durkaya and M. Bayar, 2015. Faddeev fixed-center approximation to the ρDD̄ system PHYSICAL REVIEW D 92, 036006.
  • R. L. Workman et al. [Particle Data Group], 2022. Review of Particle Physics 083C01.
Year 2024, , 161 - 166, 23.08.2024
https://doi.org/10.19113/sdufenbed.1426362

Abstract

References

  • M. Gell-Mann 1964. A schematic model of baryons and mesons, Phys. Lett. 8, 214–215
  • G. Zweig, 1964. An SU(3) model for strong interaction symmetry and its breaking, 22-101.
  • H.-X. Chen et al. 2016. The hidden-charm pentaquark and tetraquark states, Physics Reports 639 1–121 101
  • R.L. Jaffe, 1977. Multi-Quark hadrons. 2. Methods, Phys. Rev. D 15 281.
  • H. Hogaasen, P. Sorba, 1978. The systematics of possibly narrow quark states with baryon number one, Nuclear Phys. B 145 119.
  • D. Strottman, 1979. Multi-Quark baryons and the MIT bag model, Phys. Rev. D 20, 748–767.
  • H.J. Lipkin, 1987. New possibilities for exotic hadrons: anticharmed strange baryons, Phys. Lett. B 195 484.
  • F. Bissey, F-G. Cao, A. R. Kitson A. I. Signal, D. B. Leinweber, B. G. Lasscock, A. G. Williams, 2007. Gluon flux-tube distribution and linear confinement in baryons, Physical Review D 76, 114512
  • S. Jia, et al., 2017. [Belle Collaboration], Search for the 0−− glueball in Υ (1S) and Υ (2S) decays, Phys. Rev. D 95, 012001.
  • C.-F. Qiao, L. Tang, 2014. Finding the 0−− Glueball, Phys. Rev. Lett. 113, 221601,
  • Feng-Kun Guo, Christoph Hanhart, Ulf-G. Meißner, Qian Wang, Qiang Zhao, and Bing-Song Zou, 2018. Hadronic molecules, Rev. Mod. Phys. 90, 015004.
  • J. Gasser and H. Leutwyler, 1984. Chiral perturbation theory to one loop, Ann. Phys. (N.Y.) 158, 142.
  • G. Ecker, J. Gasser, H. Leutwyler, A. Pich, and E. de Rafael, 1989. Chiral Lagrangians for massive spin 1 fields, Phys. Lett. B 223, 425.
  • U. G. Meissner, 1993. Recent developments in chiral perturbation theory, Rep. Prog. Phys. 56, 903.
  • M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, 1979. QCD and resonance physics. Sum rules, Nucl. Phys. B147, 385
  • L. J. Reinders, H. Rubinstein, and S. Yazaki, 1985. Hadron properties from QCD sum rules, Phys. Rep. 127, 1
  • A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F. Weisskopf, 1974. A New Extended Model of Hadrons Phys. Rev. D 9, 3471
  • Steven Weinberg, 1963. Elementary Particle Theory of Composite Particles, Phys. Rev. 130, 776
  • Y. Nakahara, M. Asakawa, and T. Hatsuda, 1999. Hadronicspectral functions in lattice QCD, Phys. Rev. D 60,091503.
  • K. Sasaki, S. Sasaki, and T. Hatsuda, 2005. Spectral analysis of excited nucleons in lattice QCD with maximum entropy method, Phys. Lett. B 623, 208.
  • S. Basak, R. G. Edwards, G. T. Fleming, K. J. Juge, A. Lichtl, C. Morningstar, D. G. Richards, I. Sato, and S. J. Wallace, 2007. Lattice QCD determination of patterns of excited baryon states, Phys. Rev. D 76, 074504.
  • J. A. Oller, E. Oset, and J. R. Pelaez, 1998. Nonperturbative Approach to Effective Chiral Lagrangians and Meson Interactions, Phys. Rev. Lett. 80, 3452.
  • De Rujula, A., H. Georgi, and S. L. Glashow Molecular, 1977. Charmonium: A New Spectroscopy?, Phys. Rev. Lett. 38, 317.
  • M. Bayar, J. Yamagata-Sekihara, and E. Oset, 2011. The ¯K NN system with chiral dynamics, Phys. Rev. C 84, 015209
  • A. Martínez Torres, E. J. Garzón, E. Oset, and L. R. Dai, 2011. Limits to the fixed center approximation to Faddeev equations: The case of the ϕ(2170) Phys. Rev. D 83, 116002
  • J. Yamagata-Sekihara, J. Nieves, E. Oset, 2011. Couplings in couplet channels versus wave functions in the case of resonances: Application to the two Λ (1405) states, Physical Review D 83, 014003.
  • J. A. Oller, E. Oset, A. Ramos, 2000. Chiral unitary approach to meson-meson and meson-baryon interactions and nuclear applications, Prog. Part. Nucl. Phys. 45 157-242.
  • D. Gamermann and E. Oset, 2007. Axial resonances in the open and hidden charm sectors, Eur. Phys. J. A 33, 119.
  • B. Durkaya and M. Bayar, 2015. Faddeev fixed-center approximation to the ρDD̄ system PHYSICAL REVIEW D 92, 036006.
  • R. L. Workman et al. [Particle Data Group], 2022. Review of Particle Physics 083C01.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Astronomical Sciences (Other)
Journal Section Articles
Authors

Merve Aleyna Akarsu 0009-0004-7914-2243

Melahat Bayar 0000-0002-5914-0126

Publication Date August 23, 2024
Submission Date January 26, 2024
Acceptance Date May 29, 2024
Published in Issue Year 2024

Cite

APA Akarsu, M. A., & Bayar, M. (2024). πD^* ¯D^* Üç Mezon Sisteminin Faddeev Denkleminin Sabit Merkez Yaklaşıklığı Yöntemi ile İncelenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(2), 161-166. https://doi.org/10.19113/sdufenbed.1426362
AMA Akarsu MA, Bayar M. πD^* ¯D^* Üç Mezon Sisteminin Faddeev Denkleminin Sabit Merkez Yaklaşıklığı Yöntemi ile İncelenmesi. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. August 2024;28(2):161-166. doi:10.19113/sdufenbed.1426362
Chicago Akarsu, Merve Aleyna, and Melahat Bayar. “πD^* ¯D^* Üç Mezon Sisteminin Faddeev Denkleminin Sabit Merkez Yaklaşıklığı Yöntemi Ile İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28, no. 2 (August 2024): 161-66. https://doi.org/10.19113/sdufenbed.1426362.
EndNote Akarsu MA, Bayar M (August 1, 2024) πD^* ¯D^* Üç Mezon Sisteminin Faddeev Denkleminin Sabit Merkez Yaklaşıklığı Yöntemi ile İncelenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28 2 161–166.
IEEE M. A. Akarsu and M. Bayar, “πD^* ¯D^* Üç Mezon Sisteminin Faddeev Denkleminin Sabit Merkez Yaklaşıklığı Yöntemi ile İncelenmesi”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., vol. 28, no. 2, pp. 161–166, 2024, doi: 10.19113/sdufenbed.1426362.
ISNAD Akarsu, Merve Aleyna - Bayar, Melahat. “πD^* ¯D^* Üç Mezon Sisteminin Faddeev Denkleminin Sabit Merkez Yaklaşıklığı Yöntemi Ile İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28/2 (August 2024), 161-166. https://doi.org/10.19113/sdufenbed.1426362.
JAMA Akarsu MA, Bayar M. πD^* ¯D^* Üç Mezon Sisteminin Faddeev Denkleminin Sabit Merkez Yaklaşıklığı Yöntemi ile İncelenmesi. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2024;28:161–166.
MLA Akarsu, Merve Aleyna and Melahat Bayar. “πD^* ¯D^* Üç Mezon Sisteminin Faddeev Denkleminin Sabit Merkez Yaklaşıklığı Yöntemi Ile İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 28, no. 2, 2024, pp. 161-6, doi:10.19113/sdufenbed.1426362.
Vancouver Akarsu MA, Bayar M. πD^* ¯D^* Üç Mezon Sisteminin Faddeev Denkleminin Sabit Merkez Yaklaşıklığı Yöntemi ile İncelenmesi. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2024;28(2):161-6.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.