Research Article
BibTex RIS Cite

Isomorphism Theorems for Crossed Squares of Commutative Algebras

Year 2024, , 177 - 188, 23.08.2024
https://doi.org/10.19113/sdufenbed.1486991

Abstract

The isomorphism theorems for crossed squares of commutative algebras, which arise when the crossed modules of algebras are given an extra dimension, are the main subject of this paper. The definition of crossed squares of commutative algebras is given in this context, encompassing ideas like the crossed square ideal, image, and quotient crossed squares, as well as the kernel for crossed square morphisms. The study discusses the way how isomorphism theorems are applied to these structures and offers detailed proofs for this framework. Moreover, some necessary concepts such as quotient crossed squares, which were not previously specified in these structures, are also presented, and some basic properties are examined. The study provides opportunities for possible generalization to a number of different structures, including crossed n-cubes.

References

  • [1] Whitehead, J. H. 1941. On Adding Relations to Homotopy Groups. Ann. of Mathematics, 42, 409-428.
  • [2] Gerstenhaber, M. 1966. On the Deformation of Rings and Algebras: II. Ann. of Mathematics, 1-19.
  • [3] Lichtenbaum, S., Schlessinger, M. 1967. The Co-tangent Complex of a Morphism. Trans. of the American Mathematical Society, 128(1), 41-70.
  • [4] Lue, A. S. T. 1979. Semi‐Complete Crossed Mod-ules and Holomorphs of Groups. Bulletin of the London Mathematical Society, 11(1), 8-16.
  • [5] Ellis, G., Steiner, R. 1987. Higher-dimensional Crossed Modules and The Homotopy Groups of (n+ 1)-ads. Journal of Pure and Applied Algebra, 46(2-3), 117-136.
  • [6] Porter, T. 1986. Homology of Commutative Alge-bras and An Invariant of Simis and Vasconcelos. Journal of Algebra, 99(2), 458-465.
  • [7] Norrie, K. J. 1987. Crossed modules and ana-logues of group theorems. King's College London (University of London), PhD. Thesis, 209s, Lon-don.
  • [8] Ellis, G. J. 1988. Higher Dimensional Crossed Modules of Algebras. Journal of Pure and Applied Algebra, 52(3), 277-282.
  • [9] Shammu, N. M. 1992. Algebraic and categorical structure of categories of crossed modules of al-gebras, PhD thesis, University of Wales, 162s, Bangor.
  • [10] Arvasi, Z. 1997. Crossed Squares and 2-crossed Modules of Commutative Algebras. Theory and Applications of Categories, 3(7), 160-181.
  • [11] Ege Arslan, U., Gülsün Akay, H. 2018. On the Exactness Property of BXMod/R. Miskolc Math-ematical Notes, 19(1), 37-47.
  • [12] Mutlu, A., Mutlu, B. 2013. Freeness Conditions for Quasi 3-crossed Modules and Complexes of Using Simplicial Algebras with CW−bases. Math-ematical Sciences, 7, 1-12.
  • [13] Mutlu, A., Porter, T. 1998. Freeness Conditions for 2-crossed Modules and Complexes. Theory and Applications of Categories, 4(8), 174-194.
  • [14] Mutlu, A. 2000. Free 2-crossed Complexes of Simplicial Algebras. Mathematical and Computa-tional Applications, 5(1), 13-22.
  • [15] Akça, İ., Emir, K., Martins, J. F. 2019. Two-fold Homotopy of 2-crossed Module Maps of Commu-tative Algebras. Communications in Algebra, 47(1), 289-311.
  • [16] Pak, S., Akça, İ. İ. 2022. Pseudo Simplicial Alge-bras, Crossed Modules and 2-Crossed Modules. Konuralp Journal of Mathematics, 10(2), 326-331.
  • [17] Çetin, S., Gürdal, U. 2024. A Characterization of Crossed Self-similarity on Crossed Modules in L-algebras. Logic Journal of the IGPL, jzae003.
  • [18] Gürdal, U. 2023. A Jordan-Hölder theorem for Crossed Squares. Kuwait Journal of Science, 50(2), 83-90.
  • [19] Çetin, S., Gürdal, U. 2024. Crossed Modules with Action. Ukrains’kyi Matematychnyi Zhurnal, 74(4), 581-598.
  • [20] Koçak, M., Çetin, S. 2024. Higher Dimensional Leibniz-Rinehart Algebras. Journal of Mathemati-cal Sciences and Modelling, 7(1), 45-50.
  • [21] Çetin, S. 2024. Generalizations of Zassenhaus Lemma and Jordan-Hölder Theorem for 2− Crossed Modules. Turkish Journal of Mathemat-ics, 48(3), 567-593.
  • [22] Çetin, S. 2018. Centers, Commutators and Abeli-anization of Crossed Squares. Caspian Journal of Mathematical Sciences (CJMS), 7(2), 152-158.
  • [23] Can, E. 2021. Cebirlerin çaprazlanmış kareleri ve morfizmleri için izomorfizm teoremleri. Burdur Mehmet Akif Ersoy Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 67s, Burdur.

Değişmeli Cebirlerin Çaprazlanmış Kareleri için İzomorfizm Teoremleri

Year 2024, , 177 - 188, 23.08.2024
https://doi.org/10.19113/sdufenbed.1486991

Abstract

Cebirlerin çaprazlanmış modüllerine ek bir boyut daha eklendiğinde ortaya çıkan değişmeli cebirlerin çaprazlanmış kareleri için izomorfizm teoremleri bu makalenin ana konusunu teşkil etmektedir. Bu bağlamda, çapraz kare ideal, görüntü ve bölüm çapraz kareleri gibi kavramların yanı sıra çaprazlanmış kare morfizmleri için çekirdek kavramını da kapsayan değişmeli cebirlerin çaprazlanmış karelerinin tanımı verilmiştir. Çalışma, izomorfizm teoremlerinin bu yapılara nasıl uygulandığını tartışmakta ve bu çerçeve için ayrıntılı kanıtlar sunmaktadır. Ayrıca, daha önce bu yapılarda tanımlanmamış olan bölüm çaprazlanmış kareleri gibi bazı gerekli kavramlar da sunulmakta ve bunların bazı temel özellikleri incelenmektedir. Bu çalışma, çaprazlanmış n-küpler de dahil olmak üzere bir dizi farklı yapıya olası genelleştirme fırsatları sunmaktadır.

References

  • [1] Whitehead, J. H. 1941. On Adding Relations to Homotopy Groups. Ann. of Mathematics, 42, 409-428.
  • [2] Gerstenhaber, M. 1966. On the Deformation of Rings and Algebras: II. Ann. of Mathematics, 1-19.
  • [3] Lichtenbaum, S., Schlessinger, M. 1967. The Co-tangent Complex of a Morphism. Trans. of the American Mathematical Society, 128(1), 41-70.
  • [4] Lue, A. S. T. 1979. Semi‐Complete Crossed Mod-ules and Holomorphs of Groups. Bulletin of the London Mathematical Society, 11(1), 8-16.
  • [5] Ellis, G., Steiner, R. 1987. Higher-dimensional Crossed Modules and The Homotopy Groups of (n+ 1)-ads. Journal of Pure and Applied Algebra, 46(2-3), 117-136.
  • [6] Porter, T. 1986. Homology of Commutative Alge-bras and An Invariant of Simis and Vasconcelos. Journal of Algebra, 99(2), 458-465.
  • [7] Norrie, K. J. 1987. Crossed modules and ana-logues of group theorems. King's College London (University of London), PhD. Thesis, 209s, Lon-don.
  • [8] Ellis, G. J. 1988. Higher Dimensional Crossed Modules of Algebras. Journal of Pure and Applied Algebra, 52(3), 277-282.
  • [9] Shammu, N. M. 1992. Algebraic and categorical structure of categories of crossed modules of al-gebras, PhD thesis, University of Wales, 162s, Bangor.
  • [10] Arvasi, Z. 1997. Crossed Squares and 2-crossed Modules of Commutative Algebras. Theory and Applications of Categories, 3(7), 160-181.
  • [11] Ege Arslan, U., Gülsün Akay, H. 2018. On the Exactness Property of BXMod/R. Miskolc Math-ematical Notes, 19(1), 37-47.
  • [12] Mutlu, A., Mutlu, B. 2013. Freeness Conditions for Quasi 3-crossed Modules and Complexes of Using Simplicial Algebras with CW−bases. Math-ematical Sciences, 7, 1-12.
  • [13] Mutlu, A., Porter, T. 1998. Freeness Conditions for 2-crossed Modules and Complexes. Theory and Applications of Categories, 4(8), 174-194.
  • [14] Mutlu, A. 2000. Free 2-crossed Complexes of Simplicial Algebras. Mathematical and Computa-tional Applications, 5(1), 13-22.
  • [15] Akça, İ., Emir, K., Martins, J. F. 2019. Two-fold Homotopy of 2-crossed Module Maps of Commu-tative Algebras. Communications in Algebra, 47(1), 289-311.
  • [16] Pak, S., Akça, İ. İ. 2022. Pseudo Simplicial Alge-bras, Crossed Modules and 2-Crossed Modules. Konuralp Journal of Mathematics, 10(2), 326-331.
  • [17] Çetin, S., Gürdal, U. 2024. A Characterization of Crossed Self-similarity on Crossed Modules in L-algebras. Logic Journal of the IGPL, jzae003.
  • [18] Gürdal, U. 2023. A Jordan-Hölder theorem for Crossed Squares. Kuwait Journal of Science, 50(2), 83-90.
  • [19] Çetin, S., Gürdal, U. 2024. Crossed Modules with Action. Ukrains’kyi Matematychnyi Zhurnal, 74(4), 581-598.
  • [20] Koçak, M., Çetin, S. 2024. Higher Dimensional Leibniz-Rinehart Algebras. Journal of Mathemati-cal Sciences and Modelling, 7(1), 45-50.
  • [21] Çetin, S. 2024. Generalizations of Zassenhaus Lemma and Jordan-Hölder Theorem for 2− Crossed Modules. Turkish Journal of Mathemat-ics, 48(3), 567-593.
  • [22] Çetin, S. 2018. Centers, Commutators and Abeli-anization of Crossed Squares. Caspian Journal of Mathematical Sciences (CJMS), 7(2), 152-158.
  • [23] Can, E. 2021. Cebirlerin çaprazlanmış kareleri ve morfizmleri için izomorfizm teoremleri. Burdur Mehmet Akif Ersoy Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 67s, Burdur.
There are 23 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Selim Çetin 0000-0002-9017-1465

Erkan Can 0000-0002-5915-1626

Publication Date August 23, 2024
Submission Date May 20, 2024
Acceptance Date June 28, 2024
Published in Issue Year 2024

Cite

APA Çetin, S., & Can, E. (2024). Isomorphism Theorems for Crossed Squares of Commutative Algebras. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(2), 177-188. https://doi.org/10.19113/sdufenbed.1486991
AMA Çetin S, Can E. Isomorphism Theorems for Crossed Squares of Commutative Algebras. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. August 2024;28(2):177-188. doi:10.19113/sdufenbed.1486991
Chicago Çetin, Selim, and Erkan Can. “Isomorphism Theorems for Crossed Squares of Commutative Algebras”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28, no. 2 (August 2024): 177-88. https://doi.org/10.19113/sdufenbed.1486991.
EndNote Çetin S, Can E (August 1, 2024) Isomorphism Theorems for Crossed Squares of Commutative Algebras. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28 2 177–188.
IEEE S. Çetin and E. Can, “Isomorphism Theorems for Crossed Squares of Commutative Algebras”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., vol. 28, no. 2, pp. 177–188, 2024, doi: 10.19113/sdufenbed.1486991.
ISNAD Çetin, Selim - Can, Erkan. “Isomorphism Theorems for Crossed Squares of Commutative Algebras”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28/2 (August 2024), 177-188. https://doi.org/10.19113/sdufenbed.1486991.
JAMA Çetin S, Can E. Isomorphism Theorems for Crossed Squares of Commutative Algebras. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2024;28:177–188.
MLA Çetin, Selim and Erkan Can. “Isomorphism Theorems for Crossed Squares of Commutative Algebras”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 28, no. 2, 2024, pp. 177-88, doi:10.19113/sdufenbed.1486991.
Vancouver Çetin S, Can E. Isomorphism Theorems for Crossed Squares of Commutative Algebras. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2024;28(2):177-88.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.