Research Article
BibTex RIS Cite

Nötrösifik n-Normlu Uzayda Zweier (λ,μ)-İstatistiksel Yakınsamanın Yapısı Üzerine

Year 2025, Volume: 29 Issue: 3, 639 - 650, 25.12.2025
https://doi.org/10.19113/sdufenbed.1793560

Abstract

Bu çalışmada, nötrösifik n-normlu uzaylar bağlamında Zweier (λ,μ)-istatistiksel yakınsaklık kavramının temel özelliklerini detaylı bir şekilde araştırıyoruz. Teorik temeli güçlendirmek amacıyla, aynı nötrösifik n-norm yapısı altında formüle edilen Zweier [V,λ,μ]-toplanabilirlik konusundaki analizimizi genişletiyor, bu doğrultuda çeşitli önemli ve anlamlı sonuçlar elde ediyoruz. Ayrıca, Zweier (λ,μ)-istatistiksel Cauchy dizileri kavramını tanıtıyor ve analiz ediyor; bu dizilerin nötrösifik n-normlu ortamlarda Zweier (λ,μ)-istatistiksel yakınsaklık ile olan ince ve karmaşık bağlantısını açıklığa kavuşturuyoruz. Buna ek olarak, tüm istatistiksel olarak yakınsak çift diziler ile Zweier (λ,μ)-istatistiksel olarak yakınsak olanlar arasındaki kapsama ilişkilerini inceliyor ve böylece bu dizilerin nötrösifik n-norm bağlamındaki iç yapısı, yapısal özellikleri ve karşılıklı bağımlılıkları hakkında daha derin, kapsamlı ve sistematik bir anlayış sağlıyoruz. Bu kapsamlı yaklaşım, konunun kuramsal gelişimine katkı sunmaktadır.

References

  • Atanassov, K. T. 1986. Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20, 87-96.
  • Fast, H. 1951. Sur la convergence statistique. Colloquim Mathematicum, 2, 241-244.
  • Gähler, S. 1964. Lineare 2-normierte Raume. Mathematische Nachrichten, 28, 1-43.
  • Gürdal, M., Yamanci, U. 2015. Statistical convergence of operator theory. Dynamic Systems and Applications, 24(3), 305-311. Hazarika, B., Savaş, E. 2012. (λ,μ)-statistical convergence of double sequences in n-normed spaces. Note Mathematics. 32 (2), 101-114.
  • Kirişci, M., Şimşek, N. 2020. Neutrosophic normed spaces and statistical convergence. The Journal of Analysis, 28 (4), 1059–1073.
  • Kumar, V., Archana S., Sajid M. 2023. On neutrosophic n−normed linear spaces, Neutrosophic Sets and Systems, 61, 275-288.
  • Mursaleen, M., Edely, O. H. H. 2003. Statistical convergence of double sequences. Journal of Mathematical Analysis and Applications, 288 (1), 223-231.
  • Murtaza, S., Sharma, A., Kumar, V. 2023. Neutrosophic 2-normed spaces and generalized summability, Neutrosophic Sets and Systems, 55 (1), Article 25.
  • Robison, G. M. 1926. Divergent double sequences and series, Transactions of the American Mathematical Society, 28 (1), 50-73.
  • Şahiner, A., Gürdal, M., Yigit, T. 2011. Ideal convergence characterization of the completion of linear n-normed spaces. Computers & Mathematics with Applications, 61(3) (2011), 683-689.
  • Savaş, E., Kişi, Ö., Gürdal, M. 2022. On statistical convergence in credibility space. Numerical Functional Analysis and Optimization, 43(8), 987-1008.
  • Savaş, E., Mohiuddine, S. A. 2012. λ ̅-statistically convergent double sequences in probabilistic normed spaces, Mathematica Slovaca, 62(1), 99-108.
  • Schoenberg, I. J. 1959. The integrability of certain functions and related summability methods, The American Mathematical Monthly, 66 (5), 361-375.
  • Sengönül, M. 2007. On the Zweier Sequence Space, Demonstratio Mathematica, 40 (1), 181-196.
  • Smarandache, F. 2005. Neutrosophic set—a generalization of the Intuitionistic Fuzzy Set. International Journal of Pure and Applied Mathematics, 24 (3), 287–297.
  • Yamanci, U. Gürdal, M. 2016. Statistical convergence and operators on Fock space. New York Journal of Mathematics, 22, 199-207.
  • Zadeh, L. A. 1965. A. Fuzzy Sets, Information and Control, (8), 338-353.

On the Structure of Zweier (λ,μ)-Statistical Convergence in neutrosophic n-normed space

Year 2025, Volume: 29 Issue: 3, 639 - 650, 25.12.2025
https://doi.org/10.19113/sdufenbed.1793560

Abstract

In this study, we investigate fundamental properties of Zweier (λ,μ)-statistical convergence within the setting of neutrosophic n-normed spaces. To enhance the theoretical foundation, we extend our analysis to Zweier [V,λ,μ]-summability, formulated under the same neutrosophic n-norm framework, and establish several significant results. Furthermore, we introduce and analyze the concept of Zweier (λ,μ)-statistical Cauchy sequences, elucidating their nuanced connection to Zweier (λ,μ)-statistical convergence in neutrosophic n-normed environments. In addition, we explore the inclusion relations between the families of all statistically convergent double sequences and those that are Zweier (λ,μ)-statistically convergent, thereby providing a deeper understanding of their internal structure and interdependencies within the neutrosophic n-norm context.

References

  • Atanassov, K. T. 1986. Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20, 87-96.
  • Fast, H. 1951. Sur la convergence statistique. Colloquim Mathematicum, 2, 241-244.
  • Gähler, S. 1964. Lineare 2-normierte Raume. Mathematische Nachrichten, 28, 1-43.
  • Gürdal, M., Yamanci, U. 2015. Statistical convergence of operator theory. Dynamic Systems and Applications, 24(3), 305-311. Hazarika, B., Savaş, E. 2012. (λ,μ)-statistical convergence of double sequences in n-normed spaces. Note Mathematics. 32 (2), 101-114.
  • Kirişci, M., Şimşek, N. 2020. Neutrosophic normed spaces and statistical convergence. The Journal of Analysis, 28 (4), 1059–1073.
  • Kumar, V., Archana S., Sajid M. 2023. On neutrosophic n−normed linear spaces, Neutrosophic Sets and Systems, 61, 275-288.
  • Mursaleen, M., Edely, O. H. H. 2003. Statistical convergence of double sequences. Journal of Mathematical Analysis and Applications, 288 (1), 223-231.
  • Murtaza, S., Sharma, A., Kumar, V. 2023. Neutrosophic 2-normed spaces and generalized summability, Neutrosophic Sets and Systems, 55 (1), Article 25.
  • Robison, G. M. 1926. Divergent double sequences and series, Transactions of the American Mathematical Society, 28 (1), 50-73.
  • Şahiner, A., Gürdal, M., Yigit, T. 2011. Ideal convergence characterization of the completion of linear n-normed spaces. Computers & Mathematics with Applications, 61(3) (2011), 683-689.
  • Savaş, E., Kişi, Ö., Gürdal, M. 2022. On statistical convergence in credibility space. Numerical Functional Analysis and Optimization, 43(8), 987-1008.
  • Savaş, E., Mohiuddine, S. A. 2012. λ ̅-statistically convergent double sequences in probabilistic normed spaces, Mathematica Slovaca, 62(1), 99-108.
  • Schoenberg, I. J. 1959. The integrability of certain functions and related summability methods, The American Mathematical Monthly, 66 (5), 361-375.
  • Sengönül, M. 2007. On the Zweier Sequence Space, Demonstratio Mathematica, 40 (1), 181-196.
  • Smarandache, F. 2005. Neutrosophic set—a generalization of the Intuitionistic Fuzzy Set. International Journal of Pure and Applied Mathematics, 24 (3), 287–297.
  • Yamanci, U. Gürdal, M. 2016. Statistical convergence and operators on Fock space. New York Journal of Mathematics, 22, 199-207.
  • Zadeh, L. A. 1965. A. Fuzzy Sets, Information and Control, (8), 338-353.
There are 17 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Research Article
Authors

Ömer Kişi 0000-0001-6844-3092

Rabia Savas 0000-0002-4911-9067

Submission Date September 29, 2025
Acceptance Date November 1, 2025
Publication Date December 25, 2025
Published in Issue Year 2025 Volume: 29 Issue: 3

Cite

APA Kişi, Ö., & Savas, R. (2025). On the Structure of Zweier (λ,μ)-Statistical Convergence in neutrosophic n-normed space. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(3), 639-650. https://doi.org/10.19113/sdufenbed.1793560
AMA Kişi Ö, Savas R. On the Structure of Zweier (λ,μ)-Statistical Convergence in neutrosophic n-normed space. J. Nat. Appl. Sci. December 2025;29(3):639-650. doi:10.19113/sdufenbed.1793560
Chicago Kişi, Ömer, and Rabia Savas. “On the Structure of Zweier (λ,μ)-Statistical Convergence in Neutrosophic N-Normed Space”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29, no. 3 (December 2025): 639-50. https://doi.org/10.19113/sdufenbed.1793560.
EndNote Kişi Ö, Savas R (December 1, 2025) On the Structure of Zweier (λ,μ)-Statistical Convergence in neutrosophic n-normed space. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29 3 639–650.
IEEE Ö. Kişi and R. Savas, “On the Structure of Zweier (λ,μ)-Statistical Convergence in neutrosophic n-normed space”, J. Nat. Appl. Sci., vol. 29, no. 3, pp. 639–650, 2025, doi: 10.19113/sdufenbed.1793560.
ISNAD Kişi, Ömer - Savas, Rabia. “On the Structure of Zweier (λ,μ)-Statistical Convergence in Neutrosophic N-Normed Space”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29/3 (December2025), 639-650. https://doi.org/10.19113/sdufenbed.1793560.
JAMA Kişi Ö, Savas R. On the Structure of Zweier (λ,μ)-Statistical Convergence in neutrosophic n-normed space. J. Nat. Appl. Sci. 2025;29:639–650.
MLA Kişi, Ömer and Rabia Savas. “On the Structure of Zweier (λ,μ)-Statistical Convergence in Neutrosophic N-Normed Space”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 29, no. 3, 2025, pp. 639-50, doi:10.19113/sdufenbed.1793560.
Vancouver Kişi Ö, Savas R. On the Structure of Zweier (λ,μ)-Statistical Convergence in neutrosophic n-normed space. J. Nat. Appl. Sci. 2025;29(3):639-50.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.