BibTex RIS Cite

Geodesics in (<em>R<sup>n</sup></em>, <em>d</em><sub>1</sub>)

Year 2016, , 388 - 390, 07.09.2016
https://doi.org/10.19113/sdufbed.65502

Abstract

The notion of geodesic, which may be regarded as an extension of the line segment in Euclidean geometry to the space we study in, has an important place in many branches of geometry, such as Riemannian geometry, Metric geometry, to name but a few. In this article, the concept of geodesic in a metric space will be introduced, then geodesics in the space (Rn, d1) will be characterized. Furthermore, some examples will be presented to demonstrate the effectiveness of the main result.

References

  • [1] Papadopoulos, A. 2005. Metric Spaces, Convexity and Nonpositive Curvature. Irma Lectures in Mathematics and Theoretical Physics, European Mathematical Society, Germany.
  • [2] Bridson, M.R. Haefliger, A. 1999. Metric Spaces of Non-Positive Curvature. Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin.
  • [3] Burago, D. Burago, Y. Ivanov, S. 2001. A Course in Metric Geometry, Graduate Studies in Mathematics. American Mathematical Society, USA.
  • [4] Kılıç, M. 2015. Intrinsic Metric Spaces, Anadolu University, Science Institution, PhD Thesis, Eskisehir/Turkey.
Year 2016, , 388 - 390, 07.09.2016
https://doi.org/10.19113/sdufbed.65502

Abstract

References

  • [1] Papadopoulos, A. 2005. Metric Spaces, Convexity and Nonpositive Curvature. Irma Lectures in Mathematics and Theoretical Physics, European Mathematical Society, Germany.
  • [2] Bridson, M.R. Haefliger, A. 1999. Metric Spaces of Non-Positive Curvature. Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin.
  • [3] Burago, D. Burago, Y. Ivanov, S. 2001. A Course in Metric Geometry, Graduate Studies in Mathematics. American Mathematical Society, USA.
  • [4] Kılıç, M. 2015. Intrinsic Metric Spaces, Anadolu University, Science Institution, PhD Thesis, Eskisehir/Turkey.
There are 4 citations in total.

Details

Journal Section Makaleler
Authors

Mehmet Kılıç

Publication Date September 7, 2016
Published in Issue Year 2016

Cite

APA Kılıç, M. (2016). Geodesics in (Rn, d1). Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(3), 388-390. https://doi.org/10.19113/sdufbed.65502
AMA Kılıç M. Geodesics in (Rn, d1). Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. December 2016;20(3):388-390. doi:10.19113/sdufbed.65502
Chicago Kılıç, Mehmet. “Geodesics in (Rn, d1)”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20, no. 3 (December 2016): 388-90. https://doi.org/10.19113/sdufbed.65502.
EndNote Kılıç M (December 1, 2016) Geodesics in (Rn, d1). Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20 3 388–390.
IEEE M. Kılıç, “Geodesics in (Rn, d1)”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., vol. 20, no. 3, pp. 388–390, 2016, doi: 10.19113/sdufbed.65502.
ISNAD Kılıç, Mehmet. “Geodesics in (Rn, d1)”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20/3 (December 2016), 388-390. https://doi.org/10.19113/sdufbed.65502.
JAMA Kılıç M. Geodesics in (Rn, d1). Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2016;20:388–390.
MLA Kılıç, Mehmet. “Geodesics in (Rn, d1)”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 20, no. 3, 2016, pp. 388-90, doi:10.19113/sdufbed.65502.
Vancouver Kılıç M. Geodesics in (Rn, d1). Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2016;20(3):388-90.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.