Research Article
BibTex RIS Cite

Bazı Fenolik Bileşiklerin Yoğunluk Fonksiyonu Yöntemi ile Antioksidan Aktivitelerinin Tayin Edilmesi

Year 2019, , 139 - 146, 01.03.2019
https://doi.org/10.19113/sdufenbed.439631

Abstract

Oksidatif stresin başta kanser olmak üzere
ateroskleroz, hipertansiyon ve kardiyovasküler hastalıklar gibi pek çok
hastalığın patogenezinde rol oynadığı çeşitli araştırmalar sonucunda
görülmüştür. Fenolik bileşikler ise insan sağlığı bakımından antioksidan
fonksiyonları ile ön plana çıkan maddelerdir. Fenolik antioksidanların serbest
radikaller ile reaksiyona girme eğilimi antioksidan aktiviteyi tanımlamaktadır.
Bu çalışmada 10 adet fenolik bileşik gaz etanol ve su fazlarında Spartan 14 programı ile DFT//B3LYP metodu ve 6–31+G(d) temel seti ile HAT, SET-PT ve SPLET oksidasyon mekanizmaları gaz, su ve etanol
fazlarında modellenmiştir. Elde edilen verilere göre BDE, ETE, PA, IP, PDE ve
Δ(
EHOMO-ELUMO) değerleri hesaplanarak antioksidan aktiviteleri sıralanmıştır. Yapılan hesaplamalardan elde edilen tüm sonuçlar değerlendirildiğinde bileşik 1
olarak tanımlanan 2-hexadecyl-2,5,7,8-tetramethylchroman-6-ol molekülünün
antioksidan aktivitesi çalışılan yöntem ve fazlarda en yüksek olarak
bulunmuştur.

References

  • [1] Özcan, O., Erdal, H., Çakırca, G., Yönden, Z. 2015. Oksidatif Stres ve Hücre İçi Lipit, Protein ve DNA Yapıları Üzerine Etkileri. Journal of Clinical and Experimental Investigations, 6 (2015) 331-336.
  • [2] Reed, D.J. 1995. Toxicity of Oxygen in Molecular And Cellular Mechanisms of Toxicity. CRC Press, 35–68, Boca Raton- USA.
  • [3] Younes, M. 1999. Free Radicals and Reactive Oxygen Species, in Toxicology, ‘By H. Marguardt, Mechanisms of Antioxidant and Pro-Oxidant Effects of Lipoic Acid in the Diabetic and Nondiabetic Kidney’. Kidney International, 67 (1999), 1371 – 1380.
  • [4] Berlett, B.S., Stadtman, ER. 1997. Protein Oxidation in Aging, Disease and Oxidative Stress. The Journal of Biological Chemistry, 272 (1997): 20313-6.
  • [5] Şahin, D.Y., Elbasan, Z., Gür, M., Türkoğlu, C., Özaltun, B., Sümbül, Z., Çaylı, M. 2012. Relationship Between Oxidative Stress Markers and Cardiac Syndrome X. Journal of Clinical and Experimental Investigations, 3 (2012): 174-180.
  • [6] Zhang, H.Y. 1999. Theoretical Elucidation of Structure-Activity Relationships of Flavonoid Antioxidants, Science in China (series B) 42 (1999), 106–112.
  • [7] Shahidi, F., Naczk, M., 1995. Food Phenolics; Technomic Publishing:Lancaster, PA,
  • [8] Zhang, H. Y. 1998. Selection of Theoretical Parameter Characterizing Scavenging Activity of Antioxidants on Free Radicals, J. Am. Oil Chem. Soc. 75 (1998), 1705–1709.
  • [9] Lu, L., Qiang, M., Li, F., Zhang, H., Zhang, S., 2014. Theoretical Investigation on the Antioxidative Activity of Anthocyanidins: A DFT/B3LYP Study. Dyes And Pigments, 103(2014), 175–182.
  • [10] Nenadis, N., Sigalas, M. P. 2011. A DFT Study on the Radical Scavenging Potential of Selected Natural 3′,4′-Dihydroxy Aurones. Food Research International, 44 (2011), 114-120.
  • [11] Urbaniak, A., Molski, M., Szelag, M., 2012. Quantum-Chemical Calculations of the Antioxidant Properties of Trans-P-Coumaric Acid and Trans-Sinapinic Acid. Computational Methods in Science And Technology, 18 (2012), 117-128.
  • [12] Stewart, J. J. P. 2008. Application of the PM6 method to modeling the solid state, J Mol Model. 14 (2008): 499–535
  • [13] Stewart, J. J. P. 2009. Application of the PM6 method to modeling proteins, J Mol Model. 15, 7(2009), 765–805
  • [14] Spartan 14v112 (2013) Wavefunction, Inc., Irvine.
  • [15] Dennington R, Keith T, Millam J. GaussView, Version 5, Semichem Inc., Shawnee Mission KS, 2009.
  • [16] Hehre, W. J. 2003. A Guide to Molecular Mechanics and Quantum Chemical Calculations, Wavefunction, Inc., Irvine, CA.
  • [17] Frisch, M. J. “Gaussian 09”, Gaussian, Inc, 2009. Version 6.
  • [18] Axel, D. B. 1993. A new mixing of Hartree–Fock and local density‐functional theories. The Journal of Chemical Physics 98(1993), 1372.
  • [19] Petersson, G. A., Bennett, A., Tensfeldt, T. G., Al-Laham, M. A., Shirley, W. A., Mantzaris, J. 1988. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row atoms, J. Chem. Phys., 89 (1988), 2193-218.
  • [20] Zheng, Y.Z., Deng, G., Liang, Q., Chen, D.F., Guo, R., Lai, R.C. 2017. Antioxidant Activity of Quercetin and Its Glucosides From Propolis: A Theoretical Study. Scientific Reports, 7(2017), 7543.
  • [21] Weirong, C., Yong, C., Liangliang, X., Hong, Z., Chunyuan, H. 2014. Characterization and density functional theory study of the antioxidant activity of quercetin and its sugar-containing analogues, Eur Food Res Technol, 238 (2014), 121–128.
  • [22] Al-Majedy, Y. K., Al-Amiery, A. A., Kadhum, A. H., Mohamad, A. B. 2016. Antioxidant Activities of 4- Methylumbelliferone Derivatives, PLoS One. 11 (2016), 5.
  • [23] Praveena, R., Sadasivam, K., Kumaresan, R., Deepha, V, Sivakumar R. 2013. Experimental and DFT studies on the antioxidant activity of a C-glycoside from Rhynchosia capitata, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 103 (2013), 442–452.
  • [24] Praveena, R., Sadasivam, K., Kumaresan, R., Deepha, V, Sivakumar R., Zheng, Y. Z., Deng G., Liang, Q., Chen, D., Guo, R., Rong-Cai, L., 2013, Antioxidant Activity of Quercetin and Its Glucosides from Propolis: A Theoretical Study, Scientific Reports, 7(2013), 7543.

Determination of Antioxidant Activities by Density Function Method of Some Phenolic Compounds

Year 2019, , 139 - 146, 01.03.2019
https://doi.org/10.19113/sdufenbed.439631

Abstract

Oxidative
stress is implicated in various disease pathologies including cancer,
atherosclerosis, hypertension, and cardiovascular disease. Phenolic compounds
have antioxidant functions in terms of human health. The tendency of phenolic
antioxidants to react with free radicals identifies their antioxidant activity.
In this study, HAT, SET-PT and SPLET oxidation mechanisms were modeled in the
gas, water and ethanol phases with the DFT // B3LYP method and 6-31+G(d) basis
set with 10 phenolic compounds using Spartan 14. Antioxidant activities were
ranked by calculated BDE, ETE, PA, IP, PDE and Δ(EHOMO-ELUMO)
values ​​according to the obtained data. The antioxidant activity of
2-hexadecyl-2,5,7,8-tetramethylchroman-6-ol, identified as compound 1, was
found to be highest in the methods and phases studied when all the results
obtained from the calculations made were evaluated.

References

  • [1] Özcan, O., Erdal, H., Çakırca, G., Yönden, Z. 2015. Oksidatif Stres ve Hücre İçi Lipit, Protein ve DNA Yapıları Üzerine Etkileri. Journal of Clinical and Experimental Investigations, 6 (2015) 331-336.
  • [2] Reed, D.J. 1995. Toxicity of Oxygen in Molecular And Cellular Mechanisms of Toxicity. CRC Press, 35–68, Boca Raton- USA.
  • [3] Younes, M. 1999. Free Radicals and Reactive Oxygen Species, in Toxicology, ‘By H. Marguardt, Mechanisms of Antioxidant and Pro-Oxidant Effects of Lipoic Acid in the Diabetic and Nondiabetic Kidney’. Kidney International, 67 (1999), 1371 – 1380.
  • [4] Berlett, B.S., Stadtman, ER. 1997. Protein Oxidation in Aging, Disease and Oxidative Stress. The Journal of Biological Chemistry, 272 (1997): 20313-6.
  • [5] Şahin, D.Y., Elbasan, Z., Gür, M., Türkoğlu, C., Özaltun, B., Sümbül, Z., Çaylı, M. 2012. Relationship Between Oxidative Stress Markers and Cardiac Syndrome X. Journal of Clinical and Experimental Investigations, 3 (2012): 174-180.
  • [6] Zhang, H.Y. 1999. Theoretical Elucidation of Structure-Activity Relationships of Flavonoid Antioxidants, Science in China (series B) 42 (1999), 106–112.
  • [7] Shahidi, F., Naczk, M., 1995. Food Phenolics; Technomic Publishing:Lancaster, PA,
  • [8] Zhang, H. Y. 1998. Selection of Theoretical Parameter Characterizing Scavenging Activity of Antioxidants on Free Radicals, J. Am. Oil Chem. Soc. 75 (1998), 1705–1709.
  • [9] Lu, L., Qiang, M., Li, F., Zhang, H., Zhang, S., 2014. Theoretical Investigation on the Antioxidative Activity of Anthocyanidins: A DFT/B3LYP Study. Dyes And Pigments, 103(2014), 175–182.
  • [10] Nenadis, N., Sigalas, M. P. 2011. A DFT Study on the Radical Scavenging Potential of Selected Natural 3′,4′-Dihydroxy Aurones. Food Research International, 44 (2011), 114-120.
  • [11] Urbaniak, A., Molski, M., Szelag, M., 2012. Quantum-Chemical Calculations of the Antioxidant Properties of Trans-P-Coumaric Acid and Trans-Sinapinic Acid. Computational Methods in Science And Technology, 18 (2012), 117-128.
  • [12] Stewart, J. J. P. 2008. Application of the PM6 method to modeling the solid state, J Mol Model. 14 (2008): 499–535
  • [13] Stewart, J. J. P. 2009. Application of the PM6 method to modeling proteins, J Mol Model. 15, 7(2009), 765–805
  • [14] Spartan 14v112 (2013) Wavefunction, Inc., Irvine.
  • [15] Dennington R, Keith T, Millam J. GaussView, Version 5, Semichem Inc., Shawnee Mission KS, 2009.
  • [16] Hehre, W. J. 2003. A Guide to Molecular Mechanics and Quantum Chemical Calculations, Wavefunction, Inc., Irvine, CA.
  • [17] Frisch, M. J. “Gaussian 09”, Gaussian, Inc, 2009. Version 6.
  • [18] Axel, D. B. 1993. A new mixing of Hartree–Fock and local density‐functional theories. The Journal of Chemical Physics 98(1993), 1372.
  • [19] Petersson, G. A., Bennett, A., Tensfeldt, T. G., Al-Laham, M. A., Shirley, W. A., Mantzaris, J. 1988. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row atoms, J. Chem. Phys., 89 (1988), 2193-218.
  • [20] Zheng, Y.Z., Deng, G., Liang, Q., Chen, D.F., Guo, R., Lai, R.C. 2017. Antioxidant Activity of Quercetin and Its Glucosides From Propolis: A Theoretical Study. Scientific Reports, 7(2017), 7543.
  • [21] Weirong, C., Yong, C., Liangliang, X., Hong, Z., Chunyuan, H. 2014. Characterization and density functional theory study of the antioxidant activity of quercetin and its sugar-containing analogues, Eur Food Res Technol, 238 (2014), 121–128.
  • [22] Al-Majedy, Y. K., Al-Amiery, A. A., Kadhum, A. H., Mohamad, A. B. 2016. Antioxidant Activities of 4- Methylumbelliferone Derivatives, PLoS One. 11 (2016), 5.
  • [23] Praveena, R., Sadasivam, K., Kumaresan, R., Deepha, V, Sivakumar R. 2013. Experimental and DFT studies on the antioxidant activity of a C-glycoside from Rhynchosia capitata, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 103 (2013), 442–452.
  • [24] Praveena, R., Sadasivam, K., Kumaresan, R., Deepha, V, Sivakumar R., Zheng, Y. Z., Deng G., Liang, Q., Chen, D., Guo, R., Rong-Cai, L., 2013, Antioxidant Activity of Quercetin and Its Glucosides from Propolis: A Theoretical Study, Scientific Reports, 7(2013), 7543.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Vildan Enisoğlu Atalay 0000-0002-9830-9158

Hatice Ocak This is me 0000-0003-0866-5923

Publication Date March 1, 2019
Published in Issue Year 2019

Cite

APA Enisoğlu Atalay, V., & Ocak, H. (2019). Bazı Fenolik Bileşiklerin Yoğunluk Fonksiyonu Yöntemi ile Antioksidan Aktivitelerinin Tayin Edilmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23, 139-146. https://doi.org/10.19113/sdufenbed.439631
AMA Enisoğlu Atalay V, Ocak H. Bazı Fenolik Bileşiklerin Yoğunluk Fonksiyonu Yöntemi ile Antioksidan Aktivitelerinin Tayin Edilmesi. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. March 2019;23:139-146. doi:10.19113/sdufenbed.439631
Chicago Enisoğlu Atalay, Vildan, and Hatice Ocak. “Bazı Fenolik Bileşiklerin Yoğunluk Fonksiyonu Yöntemi Ile Antioksidan Aktivitelerinin Tayin Edilmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23, March (March 2019): 139-46. https://doi.org/10.19113/sdufenbed.439631.
EndNote Enisoğlu Atalay V, Ocak H (March 1, 2019) Bazı Fenolik Bileşiklerin Yoğunluk Fonksiyonu Yöntemi ile Antioksidan Aktivitelerinin Tayin Edilmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 139–146.
IEEE V. Enisoğlu Atalay and H. Ocak, “Bazı Fenolik Bileşiklerin Yoğunluk Fonksiyonu Yöntemi ile Antioksidan Aktivitelerinin Tayin Edilmesi”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., vol. 23, pp. 139–146, 2019, doi: 10.19113/sdufenbed.439631.
ISNAD Enisoğlu Atalay, Vildan - Ocak, Hatice. “Bazı Fenolik Bileşiklerin Yoğunluk Fonksiyonu Yöntemi Ile Antioksidan Aktivitelerinin Tayin Edilmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 (March 2019), 139-146. https://doi.org/10.19113/sdufenbed.439631.
JAMA Enisoğlu Atalay V, Ocak H. Bazı Fenolik Bileşiklerin Yoğunluk Fonksiyonu Yöntemi ile Antioksidan Aktivitelerinin Tayin Edilmesi. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2019;23:139–146.
MLA Enisoğlu Atalay, Vildan and Hatice Ocak. “Bazı Fenolik Bileşiklerin Yoğunluk Fonksiyonu Yöntemi Ile Antioksidan Aktivitelerinin Tayin Edilmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 23, 2019, pp. 139-46, doi:10.19113/sdufenbed.439631.
Vancouver Enisoğlu Atalay V, Ocak H. Bazı Fenolik Bileşiklerin Yoğunluk Fonksiyonu Yöntemi ile Antioksidan Aktivitelerinin Tayin Edilmesi. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2019;23:139-46.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.