Research Article
BibTex RIS Cite

Betonarme Manto Uygulamasının Prefabrike Yapıların Deprem Performansına Etkisi

Year 2019, , 343 - 355, 25.08.2019
https://doi.org/10.19113/sdufenbed.460280

Abstract

Ülkemizdeki sanayi yapıların çoğunluğunu, kolon‑kiriş
birleşim bölgelerinde moment aktarımı olmayan tek katlı prefabrike sistemleri
oluşturmaktadır. Yaşanmış depremler sonrasında yapılan gözlemler; prefabrike
yapıların deprem etkisi altında yüksek yatay yerdeğiştirmeleri nedeniyle kolon‑kiriş
birleşim bölgelerinde ve yapı genelinde önemli hasarların oluştuğunu
göstermiştir. Bu tip yapı sistemlerinin depreme karşı güçlendirilmesi, sadece
yüksek maliyetli cihazlar için değil öncelikli olarak insan yaşamı açısından hayati
önem taşımaktadır. Bu çalışmada betonarme (BA) mantolama yönteminin prefabrike
yapıların deprem performansındaki rolü sayısal olarak incelenmiştir. Çalışmanın
ilk bölümünde, literatürde deneysel sonuçları yer alan BA mantolu ve mantosuz kolonların
nümerik modelleri oluşturulmuştur. Tersinir tekrarlı yerdeğiştirme protokolü
etkisi altında yapılan deneylerden elde edilen yük-yerdeğiştirme ilişkileri,
oluşturulan nümerik model sonuçları ile karşılaştırılmıştır. Nümerik modeller,
belirli yerdeğiştirme eşikleri arasında deneysel sonuçları iyi bir şekilde
tahmin edilebilmektedir. Deneysel olarak kalibre edilmiş olan nümerik model, üç
boyutlu sanayi tipi mevcut bir yapı sisteminin lineer olmayan dinamik analizlerinde
kullanılmıştır. Sayısal sonuçlar, mantolama sayesinde prefabrike yapının ortalama
en büyük ve en küçük göreli ötelemelerin %54 ile %72 arasında değişen oranlarda
azaldığını göstermiştir. Mevcut yapının seçilen kolonları, birim
şekildeğiştirme açısından değerlendirildiğinde; güvenlik sınırı (GV) civarında olan kesit performansının BA
mantolama ile minimum hasar sınırının (MN) altına çekildiği
görülmüştür.

References

  • [1] Arslan, M.H., Korkmaz, H.H., Gulay, F.G. 2006. Damage and Failure Pattern of Prefabricated Structures after Major Earthquakes in Turkey and Shortfalls of the Turkish Earthquake Code. Engineering Failure Analysis, 13, 537 557.
  • [2] Saatcioglu, M., Mitchell, D., Tinawi, R., Gardner, N.J., Gillies, A.G., Ghoborah, A., Anderson, D.L., Lau, D. 2001. The August 17, 1999, Kocaeli (Turkey) Earthquake — Damage to Structures. Canadian Journal of Civil Engineering, 28: 715-737.
  • [3] Wang R., Jirsa J.O., Wood S.L. 2009. Rehabilitation of Precast Industrial Buildings using Cables to Develop Diaphragm Action. In: Ilki A., Karadogan F., Pala S., Yuksel E. (eds) Seismic Risk Assessment and Retrofitting. Geotechnical, Geological and Earthquake Engineering, vol 10. Springer, Dordrecht.
  • [4] Marini, A., Meda, A. 2009. Retrofitting of R/C Shear Walls by Means of High Performance Jackets. Engineering Structures, 31(2009), 3059 3064.
  • [5] Minafò, G. 2015. A Practical Approach for the Strength Evaluation of RC Columns Reinforced with RC Jackets. Engineering Structures, 85(2015), 162–169.
  • [6] Minafo, G., Trapani, F. D., Amato, G. 2016. Strength and Ductility of RC Jacketed Columns: a Simplified Analytical Method. Engineering Structures, 122(2016), 184 195.
  • [7] Alejandra, B., Navarrete O., Guerreroa, J. M. J., Díaza, M. J. 2016. Influence of RC Jacketing on the Seismic Vulnerability of RC Bridges. Engineering Structures, 123 (2016), 236 246.
  • [8] Dubey, R., Kumar P. 2016. Experimental Study of the Effectiveness of Retrofitting RC Cylindrical Columns Using Self compacting Concrete Jackets. Construction and Building Materials, 124(2016), 104 117.
  • [9] Kalogeropoulos, G. I., Tsonos, A. G. 2014. Effectiveness of R/C Jacketing of Substandard R/C Columns with Short Lap Splices. Structural Monitoring and Maintenance, 1(2014), 273 292.
  • [10] Yuce, S. Z., Yuksel, E., Bingol, Y., Taskın, K., Karadogan, H. F. 2007. Local Thin Jacketing for the Retrofitting of Reinforced Concrete Columns. Structural Engineering and Mechanics, 27(2007), 589-607.
  • [11] Thermou, G. E., Pantazopoulou S. J., Elnashai, A. S. 2007. Flexural Behavior of Brittle RC Members Rehabilitated with Concrete Jacketing. Journal of Structural Engineering, 133(2007),1373-1384
  • [12] Thermou, G.E., Papanikolaou, V. K., Kappos A .J. 2014. Flexural Behaviour of Reinforced Concrete Jacketed Columns Under Reversed Cyclic Loading. Engineering Structures, 76(2014), 270 282.
  • [13] TDY 1998. Afet Bölgelerinde Yapılacak Yapılar Hakkında Yönetmelik, Bayındırlık ve İskan Bakanlığı, Ankara, Türkiye.
  • [14] UBC-97. 1997. Uniform Building Code. In: International Conference of Buildings Official, USA.
  • [15] Eurocode-8-98. 1998. Design Provisions for Earthquake Resistance of Structures. European Union, European Prestandarts, Brussel.
  • [16] Júlio Eduardo. N. B. S., Branco, F. A. B. 2008. Reinforced Concrete Jacketing—Interface Influence on Cyclic Loading Response. ACI Structural Journal, 105(2008), 1 7.
  • [17] Júlio, Eduardo. N. B. S., Branco, F. A. B., Silva, V. D. 2005. Reinforced Concrete Jacketing—Interface Influence on Monotonic Loading Response. ACI Structural Journal, 102(2005), 252-257.
  • [18] Ilki, A., Darilmaz, K., Bakan, I., Zorbozan, M., Yuksel, E., Saruhan, H. 1998. Jacketing of Prefabricated Columns. 2nd Japan–Turkey Workshop on Earthquake Engineering, Istanbul, Turkey, 329–336.
  • [19] Ersoy, U., Tankut, T., Suleiman, R. 1993. Behavior of Jacketed Columns, ACI Structural Journal, 90(1993), 288-293.
  • [20] Rodriguez, M., Park, R. 1994. Seismic Load Tests on Reinforced Concrete Columns Strengthened by Jacketing. ACI Structural Journal, 91(1994), 150 159.
  • [21] Vandoros, K.G., Dritsos, S. E. 2006. Axial Preloading Effects when Reinforced Concrete Columns are Strengthened by Concrete Jackets. Progress in Structural Engineering and Materials, 8(2006), 79 92.
  • [22] B. Ozturk, F. Demiralan, O. Civalek “ Seismic Drift Response of Precast Concrete Building Structures Located in Earthquake-Prone Regions in Turkey Considering Nonlinear Analysis Procedures” The 14th World Conference on Earthquake Engineering, October 12-17, 2008, Beijing, China
  • [23] SeismoStruct. A Computer Program for Static and Dynamic Nonlinear Analysis of Framed Structures. URL: http://www.seismosoft.com.
  • [24] Mander, J.B., Priestley, M.J.N., Park R. 1988. Theoretical Stress-Strain Model for Confined Concrete. Journal of Structural Engineering, 114(1988), 1804 1826.
  • [25] Menegotto, M., Pinto, P.E. 1973. Method of Analysis for Cyclically Loaded RC Plane Frames İncluding Changes in Geometry and Non-Elastic Behaviour of Elements Under Combined Normal Force and Bending. Symposium on the Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, International Association for Bridge and Structural Engineering, Zurich, Switzerland, 15 22.
  • [26] Madas, P. 1993. Advanced modeling of composite frames subjected to earthquake loading, Imperial College, University of London, PhD Thesis, London, UK.
  • [27] Martinez-Rueda J. E., Elnashai, A. S. 1997. Confined Concrete Model Under Cyclic Load, Materials and Structures, 30(1997), 139 147.
  • [28] Filippou, F.C., Popov, E.P., Bertero, V.V. 1983. Effects of Bond Deterioration on Hysteretic Behaviour of Reinforced Concrete Joints. Report EERC 83-19, Earthquake Engineering Research Center, University of California, Berkeley.
  • [29] Yassin, M. H. M. 1994. Nonlinear analysis of prestressed concrete structures under monotonic and cyclic loads. University of California, PhD Thesis, Berkeley, USA.
  • [30] ECCS. 1986. Recommended Testing Procedures for Assessing the Behaviour of Structural Steel Elements under Cyclic Loads. European Convention for Constructional Steelwork, 1986, Publication No. 45.
  • [31] TDY 2007. Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, Bayındırlık ve İskan Bakanlığı, Ankara, Türkiye.
  • [32] NGA, P.N., 2019. Pacific Earthquake Engineering Research Center: NGA Database. University of California, Berkeley, CA. (http://peer.berkeley.edu/peer-strong-ground-motion-databases/)
  • [33] TS 500. 2000. Betonarme Yapıların Tasarım ve Yapım Kuralları, Türk Standartları Enstitüsü, Ankara.
  • [34] Psycharis, I. N., Mouzakis, H.P. 2012. Shear Resistance of Pinned Connections of Precast Members to Monotonic and Cyclic Loading. Engineering Structures, 41(2012), 413-427.

The Effects of Reinforced Concrete Jacketing on the Earthquake Performance of Precast Structures

Year 2019, , 343 - 355, 25.08.2019
https://doi.org/10.19113/sdufenbed.460280

Abstract

The
majority of industrial buildings located in our country consist of single-story
precast systems with pinned beam-to-column connections. Observations made after
earthquakes showed that due to high lateral displacement demands occurred under
the effects of earthquake loads; significant damage was accumulated throughout
the beam-to-column connections and whole structure. Strengthening such building
systems against earthquake loads is not only crucial for high-cost devices and
machinery but also very important in terms of human life as a priority. In this study, the effects of reinforced
concrete (RC) jacketing technique on the global earthquake performance of
precast structures was examined numerically. In the first part of the study,
experimental results of bare and RC jacketed columns, which exist in the recent
literature, were used as a benchmark for the development of numerical models.
The force-displacement relations obtained from quasi-static experiments were
compared with the numerical results. The numerical models are successful to
estimate the experimental results within the range of distinct displacement
levels. Validated numerical models were used for nonlinear dynamic analysis of
an existing 3D precast system. Numerical results showed that the application of
RC jacketing technique is effective to decrease the average maximum and minimum
drift values by the ratios of 54-72%. Determinations of strain levels for the
selected columns of the system showed that; the RC jacketing retrofitting technique
is effective to increase the sectional performance by shifting the strain
demands from safety limit (GV) to minimum damage limit (MN).

References

  • [1] Arslan, M.H., Korkmaz, H.H., Gulay, F.G. 2006. Damage and Failure Pattern of Prefabricated Structures after Major Earthquakes in Turkey and Shortfalls of the Turkish Earthquake Code. Engineering Failure Analysis, 13, 537 557.
  • [2] Saatcioglu, M., Mitchell, D., Tinawi, R., Gardner, N.J., Gillies, A.G., Ghoborah, A., Anderson, D.L., Lau, D. 2001. The August 17, 1999, Kocaeli (Turkey) Earthquake — Damage to Structures. Canadian Journal of Civil Engineering, 28: 715-737.
  • [3] Wang R., Jirsa J.O., Wood S.L. 2009. Rehabilitation of Precast Industrial Buildings using Cables to Develop Diaphragm Action. In: Ilki A., Karadogan F., Pala S., Yuksel E. (eds) Seismic Risk Assessment and Retrofitting. Geotechnical, Geological and Earthquake Engineering, vol 10. Springer, Dordrecht.
  • [4] Marini, A., Meda, A. 2009. Retrofitting of R/C Shear Walls by Means of High Performance Jackets. Engineering Structures, 31(2009), 3059 3064.
  • [5] Minafò, G. 2015. A Practical Approach for the Strength Evaluation of RC Columns Reinforced with RC Jackets. Engineering Structures, 85(2015), 162–169.
  • [6] Minafo, G., Trapani, F. D., Amato, G. 2016. Strength and Ductility of RC Jacketed Columns: a Simplified Analytical Method. Engineering Structures, 122(2016), 184 195.
  • [7] Alejandra, B., Navarrete O., Guerreroa, J. M. J., Díaza, M. J. 2016. Influence of RC Jacketing on the Seismic Vulnerability of RC Bridges. Engineering Structures, 123 (2016), 236 246.
  • [8] Dubey, R., Kumar P. 2016. Experimental Study of the Effectiveness of Retrofitting RC Cylindrical Columns Using Self compacting Concrete Jackets. Construction and Building Materials, 124(2016), 104 117.
  • [9] Kalogeropoulos, G. I., Tsonos, A. G. 2014. Effectiveness of R/C Jacketing of Substandard R/C Columns with Short Lap Splices. Structural Monitoring and Maintenance, 1(2014), 273 292.
  • [10] Yuce, S. Z., Yuksel, E., Bingol, Y., Taskın, K., Karadogan, H. F. 2007. Local Thin Jacketing for the Retrofitting of Reinforced Concrete Columns. Structural Engineering and Mechanics, 27(2007), 589-607.
  • [11] Thermou, G. E., Pantazopoulou S. J., Elnashai, A. S. 2007. Flexural Behavior of Brittle RC Members Rehabilitated with Concrete Jacketing. Journal of Structural Engineering, 133(2007),1373-1384
  • [12] Thermou, G.E., Papanikolaou, V. K., Kappos A .J. 2014. Flexural Behaviour of Reinforced Concrete Jacketed Columns Under Reversed Cyclic Loading. Engineering Structures, 76(2014), 270 282.
  • [13] TDY 1998. Afet Bölgelerinde Yapılacak Yapılar Hakkında Yönetmelik, Bayındırlık ve İskan Bakanlığı, Ankara, Türkiye.
  • [14] UBC-97. 1997. Uniform Building Code. In: International Conference of Buildings Official, USA.
  • [15] Eurocode-8-98. 1998. Design Provisions for Earthquake Resistance of Structures. European Union, European Prestandarts, Brussel.
  • [16] Júlio Eduardo. N. B. S., Branco, F. A. B. 2008. Reinforced Concrete Jacketing—Interface Influence on Cyclic Loading Response. ACI Structural Journal, 105(2008), 1 7.
  • [17] Júlio, Eduardo. N. B. S., Branco, F. A. B., Silva, V. D. 2005. Reinforced Concrete Jacketing—Interface Influence on Monotonic Loading Response. ACI Structural Journal, 102(2005), 252-257.
  • [18] Ilki, A., Darilmaz, K., Bakan, I., Zorbozan, M., Yuksel, E., Saruhan, H. 1998. Jacketing of Prefabricated Columns. 2nd Japan–Turkey Workshop on Earthquake Engineering, Istanbul, Turkey, 329–336.
  • [19] Ersoy, U., Tankut, T., Suleiman, R. 1993. Behavior of Jacketed Columns, ACI Structural Journal, 90(1993), 288-293.
  • [20] Rodriguez, M., Park, R. 1994. Seismic Load Tests on Reinforced Concrete Columns Strengthened by Jacketing. ACI Structural Journal, 91(1994), 150 159.
  • [21] Vandoros, K.G., Dritsos, S. E. 2006. Axial Preloading Effects when Reinforced Concrete Columns are Strengthened by Concrete Jackets. Progress in Structural Engineering and Materials, 8(2006), 79 92.
  • [22] B. Ozturk, F. Demiralan, O. Civalek “ Seismic Drift Response of Precast Concrete Building Structures Located in Earthquake-Prone Regions in Turkey Considering Nonlinear Analysis Procedures” The 14th World Conference on Earthquake Engineering, October 12-17, 2008, Beijing, China
  • [23] SeismoStruct. A Computer Program for Static and Dynamic Nonlinear Analysis of Framed Structures. URL: http://www.seismosoft.com.
  • [24] Mander, J.B., Priestley, M.J.N., Park R. 1988. Theoretical Stress-Strain Model for Confined Concrete. Journal of Structural Engineering, 114(1988), 1804 1826.
  • [25] Menegotto, M., Pinto, P.E. 1973. Method of Analysis for Cyclically Loaded RC Plane Frames İncluding Changes in Geometry and Non-Elastic Behaviour of Elements Under Combined Normal Force and Bending. Symposium on the Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, International Association for Bridge and Structural Engineering, Zurich, Switzerland, 15 22.
  • [26] Madas, P. 1993. Advanced modeling of composite frames subjected to earthquake loading, Imperial College, University of London, PhD Thesis, London, UK.
  • [27] Martinez-Rueda J. E., Elnashai, A. S. 1997. Confined Concrete Model Under Cyclic Load, Materials and Structures, 30(1997), 139 147.
  • [28] Filippou, F.C., Popov, E.P., Bertero, V.V. 1983. Effects of Bond Deterioration on Hysteretic Behaviour of Reinforced Concrete Joints. Report EERC 83-19, Earthquake Engineering Research Center, University of California, Berkeley.
  • [29] Yassin, M. H. M. 1994. Nonlinear analysis of prestressed concrete structures under monotonic and cyclic loads. University of California, PhD Thesis, Berkeley, USA.
  • [30] ECCS. 1986. Recommended Testing Procedures for Assessing the Behaviour of Structural Steel Elements under Cyclic Loads. European Convention for Constructional Steelwork, 1986, Publication No. 45.
  • [31] TDY 2007. Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, Bayındırlık ve İskan Bakanlığı, Ankara, Türkiye.
  • [32] NGA, P.N., 2019. Pacific Earthquake Engineering Research Center: NGA Database. University of California, Berkeley, CA. (http://peer.berkeley.edu/peer-strong-ground-motion-databases/)
  • [33] TS 500. 2000. Betonarme Yapıların Tasarım ve Yapım Kuralları, Türk Standartları Enstitüsü, Ankara.
  • [34] Psycharis, I. N., Mouzakis, H.P. 2012. Shear Resistance of Pinned Connections of Precast Members to Monotonic and Cyclic Loading. Engineering Structures, 41(2012), 413-427.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Cihan Soydan 0000-0003-3579-0033

Hasan Özkaynak 0000-0003-2880-7669

Publication Date August 25, 2019
Published in Issue Year 2019

Cite

APA Soydan, C., & Özkaynak, H. (2019). Betonarme Manto Uygulamasının Prefabrike Yapıların Deprem Performansına Etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(2), 343-355. https://doi.org/10.19113/sdufenbed.460280
AMA Soydan C, Özkaynak H. Betonarme Manto Uygulamasının Prefabrike Yapıların Deprem Performansına Etkisi. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. August 2019;23(2):343-355. doi:10.19113/sdufenbed.460280
Chicago Soydan, Cihan, and Hasan Özkaynak. “Betonarme Manto Uygulamasının Prefabrike Yapıların Deprem Performansına Etkisi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23, no. 2 (August 2019): 343-55. https://doi.org/10.19113/sdufenbed.460280.
EndNote Soydan C, Özkaynak H (August 1, 2019) Betonarme Manto Uygulamasının Prefabrike Yapıların Deprem Performansına Etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 2 343–355.
IEEE C. Soydan and H. Özkaynak, “Betonarme Manto Uygulamasının Prefabrike Yapıların Deprem Performansına Etkisi”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., vol. 23, no. 2, pp. 343–355, 2019, doi: 10.19113/sdufenbed.460280.
ISNAD Soydan, Cihan - Özkaynak, Hasan. “Betonarme Manto Uygulamasının Prefabrike Yapıların Deprem Performansına Etkisi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23/2 (August 2019), 343-355. https://doi.org/10.19113/sdufenbed.460280.
JAMA Soydan C, Özkaynak H. Betonarme Manto Uygulamasının Prefabrike Yapıların Deprem Performansına Etkisi. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2019;23:343–355.
MLA Soydan, Cihan and Hasan Özkaynak. “Betonarme Manto Uygulamasının Prefabrike Yapıların Deprem Performansına Etkisi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 23, no. 2, 2019, pp. 343-55, doi:10.19113/sdufenbed.460280.
Vancouver Soydan C, Özkaynak H. Betonarme Manto Uygulamasının Prefabrike Yapıların Deprem Performansına Etkisi. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2019;23(2):343-55.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.