Research Article
BibTex RIS Cite

Minkowski Uzay-Zamanda Timelike Eğriler Arasındaki Bäcklund Dönüşümü Üzerine

Year 2018, , 1143 - 1150, 20.09.2018
https://doi.org/10.19113/sdufenbed.469297

Abstract

Bu çalışmanın amacı, Minkowski
uzay-zamanda timelike eğriler arasında Bäcklund dönüşümünü tanımlamaktır. Bu
amaç doğrultusunda, timelike Bäcklund eğrilerin Frenet çatıları arasında
ilişkiyi ortaya koyan dönme matrisinin seçimine bağlı olarak dönüşümü
inceledik. İkisi spacelike hiperdüzlemde küresel dönme ve biri ise timelike
hiperdüzlemde hiperbolik dönme olmak üzere üç farklı dönme matrisi durumu söz
konusudur. Her durum için, timelike Bäcklund eğrilerinin eğrilik fonksiyonları
arasındaki ilişki ortaya konmuştur. Bu arada, işaret farkı gözeterek timelike Bäcklund
eğrilerin eşit ikinci burulma fonksiyonuna sahip olması gerektiği
ispatlanmıştır. Bu aynı zamanda; Bäcklund dönüşümün bir sabit ikinci burulmaya sahip
timelike eğriyi bir başka sabit ikinci burulmaya sahip timelike eğriye taşıyan
dönüşüm olduğu anlamıma gelir.

References

  • [1] Abdel-baky, R.A. The Bäcklund's theorem in Minkowski 3-space R_1^3. App. Math. and Comp. 160 (2005), 41-55.
  • [2] Rogers, C. and Schief, W.K. Bäcklund and Darboux Transformations, Geometry and Modern Applications in Soliton Theory. Cambridge Univ. Press, Cambridge. (2002).
  • [3] Rogers, C. and Shadwick, W.K.: Backlund Transformations and Their Applications (1st Edition). Academic Press. ISBN 0-12-592850-5.
  • [4] Schief, W.K. and Rogers, C.: Binormal motion of curves of constant curvature and torsion. Generation of soliton surfaces. Proc. R. Soc. Lond. 455, 3163-3188 (1999).
  • [5] Özdemir, M., Erdoğdu, M., Şimşek, H., Ergin,A.A. Bäcklund transformation for spacelike curves in the Minkowski space-time. Kuwait Journal of Science and Engineering. 41 (2014), 21-34.
  • [6] Şimşek, H. and Özdemir, M. Bäcklund's Theorem for n Dimensional Lorentzian Submanifold in Minkowski n space E_1^(2n-1). Results in Math. 69 (2016), 201-223.
  • [7] Gürses, M. Motion of curves on two-dimensional surfaces and soliton equations. Physics Letters A. 241(1998), 329-334.
  • [8] Deng, S-F. Bäcklund transformation and soliton solutions for KP equation. Chaos, Solitons & Fractals. 25 (2005), 475-480.
  • [9] Özdemir, M. and Erdoğdu, M. On the Rotation Matrix in Minkowski space-time. Reports on Mathematical Physics. 74(2014), 27-38.
  • [10] Gu, C.H., Hu H.S., Inoguchi, J.I. On time-like surfaces of positive constant Gaussian curvature and imaginary principal curvatures. Journal of Geometry and Physics. 41 (2002), 296-311.
  • [11] Tian, C. Bäcklund transformations for surfaces with K=-1 in R^2,1. Journal of Geometry and Physics 22 (1997), 212-218.
  • [12] Nemeth, S.Z. Bäcklund Transformations of n -dimensional constant torsion curves. Publi-cationes Mathematicae. 53(1998), 271-279.
  • [13] Nemeth, S.Z. Bäcklund transformations of constant torsion curves in 3-dimensional constant curvature spaces. Italian Journal of Pure and Applied Mathematics. 7(2000), 125-138.
  • [14] Aminov, Y. and Sym, A. On Bianchi and Bäcklund transformations of two-dimensional surfaces inE_1^4. Math. Phys. Anal. Geom. 3(2000), 75-89.
  • [15] Özdemir, M. and Çöken, A.C. Bäcklund transformation for non-lightlike curves in Minkowski 3-space. Chaos, Solitons & Fractals. 42 (2009), 2540-2545.
  • [16] Grbovic, M. and Nesovic, E. On Bäcklund transformation and vortex filament equation for null Cartan curve in Minkowski 3-space. Mathematical Physics, Analysis and Geometry. 19:23 (2016), 1-15.
  • [17] Grbovic, M. and Nesovic, E. On Bäcklund transformation and vortex filament equation for pseudo null curves in Minkowski 3-space. International Journal of Geometric Methods in Modern Physics 13 (2016), 1-14.
  • [18] Erdoğdu, M. and Özdemir, M. Reflections and Rotation in Minkowski 3-Space. Journal of Geometry, Symmetry and Physics. 39 (2015), 1-16.
  • [19] Erdoğdu, M., Özdemir, M. Cayley Formula in Minkowski Space-time. International Journal of Geometric Methods in Modern Physics. 12 (2015).
  • [20] O'Neill, B. Semi-Riemannian Geometry with Applications to Relativity. Academic Press Inc., London, 1983.

On Bäcklund Transformation Between Timelike Curves in Minkowski Space-Time

Year 2018, , 1143 - 1150, 20.09.2018
https://doi.org/10.19113/sdufenbed.469297

Abstract

The aim of this paper is to define
Bäcklund transformation between two timelike curves in four dimensional
Minkowski space. For this purpose, we examine the transformation depending on
the choice of rotation matrix which determines the relations between Frenet
frames of timelike Bäcklund curves. There are three different cases for
rotation matrix; two of them are spherical rotations on the spacelike hyperplane
and one of them is hyperbolical rotation on the timelike hyperplane. For each
case, we get the relations between curvature functions of timelike Bäcklund
curves. By the way, we prove that timelike Bäcklund curves must have equal constant
second torsion functions up to sign. This also means that Bäcklund
transformation is a transformation which maps a timelike curve with constant
second torsion to another timelike curve with constant second torsion.

References

  • [1] Abdel-baky, R.A. The Bäcklund's theorem in Minkowski 3-space R_1^3. App. Math. and Comp. 160 (2005), 41-55.
  • [2] Rogers, C. and Schief, W.K. Bäcklund and Darboux Transformations, Geometry and Modern Applications in Soliton Theory. Cambridge Univ. Press, Cambridge. (2002).
  • [3] Rogers, C. and Shadwick, W.K.: Backlund Transformations and Their Applications (1st Edition). Academic Press. ISBN 0-12-592850-5.
  • [4] Schief, W.K. and Rogers, C.: Binormal motion of curves of constant curvature and torsion. Generation of soliton surfaces. Proc. R. Soc. Lond. 455, 3163-3188 (1999).
  • [5] Özdemir, M., Erdoğdu, M., Şimşek, H., Ergin,A.A. Bäcklund transformation for spacelike curves in the Minkowski space-time. Kuwait Journal of Science and Engineering. 41 (2014), 21-34.
  • [6] Şimşek, H. and Özdemir, M. Bäcklund's Theorem for n Dimensional Lorentzian Submanifold in Minkowski n space E_1^(2n-1). Results in Math. 69 (2016), 201-223.
  • [7] Gürses, M. Motion of curves on two-dimensional surfaces and soliton equations. Physics Letters A. 241(1998), 329-334.
  • [8] Deng, S-F. Bäcklund transformation and soliton solutions for KP equation. Chaos, Solitons & Fractals. 25 (2005), 475-480.
  • [9] Özdemir, M. and Erdoğdu, M. On the Rotation Matrix in Minkowski space-time. Reports on Mathematical Physics. 74(2014), 27-38.
  • [10] Gu, C.H., Hu H.S., Inoguchi, J.I. On time-like surfaces of positive constant Gaussian curvature and imaginary principal curvatures. Journal of Geometry and Physics. 41 (2002), 296-311.
  • [11] Tian, C. Bäcklund transformations for surfaces with K=-1 in R^2,1. Journal of Geometry and Physics 22 (1997), 212-218.
  • [12] Nemeth, S.Z. Bäcklund Transformations of n -dimensional constant torsion curves. Publi-cationes Mathematicae. 53(1998), 271-279.
  • [13] Nemeth, S.Z. Bäcklund transformations of constant torsion curves in 3-dimensional constant curvature spaces. Italian Journal of Pure and Applied Mathematics. 7(2000), 125-138.
  • [14] Aminov, Y. and Sym, A. On Bianchi and Bäcklund transformations of two-dimensional surfaces inE_1^4. Math. Phys. Anal. Geom. 3(2000), 75-89.
  • [15] Özdemir, M. and Çöken, A.C. Bäcklund transformation for non-lightlike curves in Minkowski 3-space. Chaos, Solitons & Fractals. 42 (2009), 2540-2545.
  • [16] Grbovic, M. and Nesovic, E. On Bäcklund transformation and vortex filament equation for null Cartan curve in Minkowski 3-space. Mathematical Physics, Analysis and Geometry. 19:23 (2016), 1-15.
  • [17] Grbovic, M. and Nesovic, E. On Bäcklund transformation and vortex filament equation for pseudo null curves in Minkowski 3-space. International Journal of Geometric Methods in Modern Physics 13 (2016), 1-14.
  • [18] Erdoğdu, M. and Özdemir, M. Reflections and Rotation in Minkowski 3-Space. Journal of Geometry, Symmetry and Physics. 39 (2015), 1-16.
  • [19] Erdoğdu, M., Özdemir, M. Cayley Formula in Minkowski Space-time. International Journal of Geometric Methods in Modern Physics. 12 (2015).
  • [20] O'Neill, B. Semi-Riemannian Geometry with Applications to Relativity. Academic Press Inc., London, 1983.
There are 20 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Melek Erdoğdu

Mustafa Özdemir This is me

Publication Date September 20, 2018
Published in Issue Year 2018

Cite

APA Erdoğdu, M., & Özdemir, M. (2018). On Bäcklund Transformation Between Timelike Curves in Minkowski Space-Time. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(3), 1143-1150. https://doi.org/10.19113/sdufenbed.469297
AMA Erdoğdu M, Özdemir M. On Bäcklund Transformation Between Timelike Curves in Minkowski Space-Time. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. September 2018;22(3):1143-1150. doi:10.19113/sdufenbed.469297
Chicago Erdoğdu, Melek, and Mustafa Özdemir. “On Bäcklund Transformation Between Timelike Curves in Minkowski Space-Time”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, no. 3 (September 2018): 1143-50. https://doi.org/10.19113/sdufenbed.469297.
EndNote Erdoğdu M, Özdemir M (September 1, 2018) On Bäcklund Transformation Between Timelike Curves in Minkowski Space-Time. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 3 1143–1150.
IEEE M. Erdoğdu and M. Özdemir, “On Bäcklund Transformation Between Timelike Curves in Minkowski Space-Time”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., vol. 22, no. 3, pp. 1143–1150, 2018, doi: 10.19113/sdufenbed.469297.
ISNAD Erdoğdu, Melek - Özdemir, Mustafa. “On Bäcklund Transformation Between Timelike Curves in Minkowski Space-Time”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/3 (September 2018), 1143-1150. https://doi.org/10.19113/sdufenbed.469297.
JAMA Erdoğdu M, Özdemir M. On Bäcklund Transformation Between Timelike Curves in Minkowski Space-Time. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2018;22:1143–1150.
MLA Erdoğdu, Melek and Mustafa Özdemir. “On Bäcklund Transformation Between Timelike Curves in Minkowski Space-Time”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 22, no. 3, 2018, pp. 1143-50, doi:10.19113/sdufenbed.469297.
Vancouver Erdoğdu M, Özdemir M. On Bäcklund Transformation Between Timelike Curves in Minkowski Space-Time. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2018;22(3):1143-50.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.