Research Article
BibTex RIS Cite

On Concircular Curvature Tensor in Space-Times

Year 2018, , 1151 - 1156, 20.09.2018
https://doi.org/10.19113/sdufenbed.469483

Abstract

The aim of this work is to examine some properties of the concircular curvature tensor on $4-$dimensional manifolds admitting a Lorentz metric (so called space-times). In the first two sections, the study is introduced and the interrelated concepts together with some notations are presented. In the third section of the study, some results are obtained connected to eigenbivector structure of the concircular curvature tensor on these manifolds by taking into account the classification scheme of 2--forms (also known as bivectors) in this metric signature. Then, the known holonomy algebras on space-times are considered and some theorems are given regarding the concircular and Riemann curvature tensors. This analysis is also associated with the types of the Riemann curvature tensor on these manifolds. In the last section, the results of the study is summarized and the discussion part is presented.

References

  • [1] Mikeš, J., Stepanova, E., Vanžurová, A., et al. 2015. Differential Geometry of Special Mappings. Palacký University, Olomouc.
  • [2] Hall, G. S. 2004. Symmetries and Curvature Structure in General Relativity. World Scientific.
  • [3] Yano, K. 1940. Concircular Geometry I. Concircular Transformations. Proceedings of the Imperial Academy, 16, 6, 195-200.
  • [4] Yano, K. 1940. Concircular Geometry II. Integrability Conditions of $\rho_{\mu\nu}=\phi g_{\mu\nu}$. Proceedings of the Imperial Academy, 16, 8, 354-360.
  • [5] Blair, D. E., Kim, J-S., Tripathi, M. M. 2005. On the Concircular Curvature Tensor of a Contact Metric Manifold. Journal of the Korean Mathematical Society, 42, 5, 883-892.
  • [6] Kühnel, W. 1988. Conformal Transformations Between Einstein Spaces. Conformal Geometry. Aspects of Mathematics / Aspekte der Mathematik, vol 12. Vieweg+Teubner Verlag, Wiesbaden, 105-146.
  • [7] Hong, S., Özgür, C., Tripathi, M. M. 2006. On Some Special Classes of Kenmotsu Manifolds. Kuwait Journal of Science and Engineering, 33, 2, 19-32.
  • [8] Hirica, I. E. 2016. Properties of Concircular Curvature Tensors on Riemann Spaces. Filomat, 30, 11, 2901-2907.
  • [9] Ahsan, Z., Siddiqui, S. A. 2009. Concircular Curvature Tensor and Fluid Spacetimes. International Journal of Theoretical Physics, 48, 11, 3202-3212.
  • [10] Olszak, K., Olszak, Z. 2012. On Pseudo-Riemannian Manifolds with Recurrent Concircular Curvature Tensor. Acta Mathematica Hungarica, 137, 1-2, 64-71.
  • [11] Sachs, R. K. 1961. Gravitational Waves in General Relativity. VI. The Outgoing Radiation Condition. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 264, 309-338.
  • [12] Kobayashi S., Nomizu K. 1963. Foundations of Differential Geometry, Interscience, vol 1., New York.
  • [13] Schell, J. F. 1961. Classification of Four-Dimensional Riemannian Spaces. Journal of Mathematical Physics, 2, 202-206.
  • [14] Hall, G. S., Lonie, D. P. 2004. Holonomy and Projective Symmetry in Spacetimes. Classical and Quantum Gravity, 21, 19, 4549-4556.
  • [15] Hall, G. S., Lonie, D. P. 2000. Holonomy Groups and Spacetimes. Classical and Quantum Gravity, 17, 6, 1369-1382.
  • [16] Wang, Z., Hall, G.S. 2013. Projective Structure in 4-dimensional Manifolds with Metric of Signature (+;+;-;-). Journal of Geometry and Physics, 66, 37-49.

Uzay-Zamanlardaki Konsörkılır Eğrilik Tensörü Üzerine

Year 2018, , 1151 - 1156, 20.09.2018
https://doi.org/10.19113/sdufenbed.469483

Abstract

Bu çalışmanın amacı, uzay-zaman olarak adlandırılan 4-boyutlu Lorentz metrik işaretli manifoldlar üzerinde konsörkılır eğrilik tensörünün bazı özelliklerinin incelenmesidir. İlk iki bölümde çalışma tanıtılmış ve birbiriyle ilişkili kavramlar ile bazı notasyonlar sunulmuştur. Çalışmanın üçüncü bölümünde, bu metrik işarette (bivektörler olarak da bilinen) 2-formların sınıflandırma şeması göz önüne alınarak, bu manifoldlar üzerindeki konsörkılır eğrilik tensörünün özbivektör yapısı ile ilgili bazı sonuçlar elde edilmiştir. Daha sonra, uzay-zamanlar üzerinde bilinen dolanım cebirleri dikkate alınmış, konsörkılır ve Riemann eğrilik tensörlerine ilişkin bazı teoremler verilmiştir. Söz konusu analiz, bu manifoldlar üzerindeki Riemann eğrilik tensörünün tipleri ile de ilişkilidir. Son bölümde ise, çalışmada elde edilen sonuçlar özetlenmiş ve tartışma bölümü sunulmuştur.

References

  • [1] Mikeš, J., Stepanova, E., Vanžurová, A., et al. 2015. Differential Geometry of Special Mappings. Palacký University, Olomouc.
  • [2] Hall, G. S. 2004. Symmetries and Curvature Structure in General Relativity. World Scientific.
  • [3] Yano, K. 1940. Concircular Geometry I. Concircular Transformations. Proceedings of the Imperial Academy, 16, 6, 195-200.
  • [4] Yano, K. 1940. Concircular Geometry II. Integrability Conditions of $\rho_{\mu\nu}=\phi g_{\mu\nu}$. Proceedings of the Imperial Academy, 16, 8, 354-360.
  • [5] Blair, D. E., Kim, J-S., Tripathi, M. M. 2005. On the Concircular Curvature Tensor of a Contact Metric Manifold. Journal of the Korean Mathematical Society, 42, 5, 883-892.
  • [6] Kühnel, W. 1988. Conformal Transformations Between Einstein Spaces. Conformal Geometry. Aspects of Mathematics / Aspekte der Mathematik, vol 12. Vieweg+Teubner Verlag, Wiesbaden, 105-146.
  • [7] Hong, S., Özgür, C., Tripathi, M. M. 2006. On Some Special Classes of Kenmotsu Manifolds. Kuwait Journal of Science and Engineering, 33, 2, 19-32.
  • [8] Hirica, I. E. 2016. Properties of Concircular Curvature Tensors on Riemann Spaces. Filomat, 30, 11, 2901-2907.
  • [9] Ahsan, Z., Siddiqui, S. A. 2009. Concircular Curvature Tensor and Fluid Spacetimes. International Journal of Theoretical Physics, 48, 11, 3202-3212.
  • [10] Olszak, K., Olszak, Z. 2012. On Pseudo-Riemannian Manifolds with Recurrent Concircular Curvature Tensor. Acta Mathematica Hungarica, 137, 1-2, 64-71.
  • [11] Sachs, R. K. 1961. Gravitational Waves in General Relativity. VI. The Outgoing Radiation Condition. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 264, 309-338.
  • [12] Kobayashi S., Nomizu K. 1963. Foundations of Differential Geometry, Interscience, vol 1., New York.
  • [13] Schell, J. F. 1961. Classification of Four-Dimensional Riemannian Spaces. Journal of Mathematical Physics, 2, 202-206.
  • [14] Hall, G. S., Lonie, D. P. 2004. Holonomy and Projective Symmetry in Spacetimes. Classical and Quantum Gravity, 21, 19, 4549-4556.
  • [15] Hall, G. S., Lonie, D. P. 2000. Holonomy Groups and Spacetimes. Classical and Quantum Gravity, 17, 6, 1369-1382.
  • [16] Wang, Z., Hall, G.S. 2013. Projective Structure in 4-dimensional Manifolds with Metric of Signature (+;+;-;-). Journal of Geometry and Physics, 66, 37-49.
There are 16 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Bahar Kırık

Publication Date September 20, 2018
Published in Issue Year 2018

Cite

APA Kırık, B. (2018). On Concircular Curvature Tensor in Space-Times. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(3), 1151-1156. https://doi.org/10.19113/sdufenbed.469483
AMA Kırık B. On Concircular Curvature Tensor in Space-Times. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. September 2018;22(3):1151-1156. doi:10.19113/sdufenbed.469483
Chicago Kırık, Bahar. “On Concircular Curvature Tensor in Space-Times”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, no. 3 (September 2018): 1151-56. https://doi.org/10.19113/sdufenbed.469483.
EndNote Kırık B (September 1, 2018) On Concircular Curvature Tensor in Space-Times. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 3 1151–1156.
IEEE B. Kırık, “On Concircular Curvature Tensor in Space-Times”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., vol. 22, no. 3, pp. 1151–1156, 2018, doi: 10.19113/sdufenbed.469483.
ISNAD Kırık, Bahar. “On Concircular Curvature Tensor in Space-Times”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/3 (September 2018), 1151-1156. https://doi.org/10.19113/sdufenbed.469483.
JAMA Kırık B. On Concircular Curvature Tensor in Space-Times. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2018;22:1151–1156.
MLA Kırık, Bahar. “On Concircular Curvature Tensor in Space-Times”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 22, no. 3, 2018, pp. 1151-6, doi:10.19113/sdufenbed.469483.
Vancouver Kırık B. On Concircular Curvature Tensor in Space-Times. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2018;22(3):1151-6.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.