Radical Scavenging Activity of Some Lathyrus Taxa Distributed in Burdur-Isparta Regio
Year 2021,
, 121 - 126, 20.04.2021
Esra Eyiiş
Asuman Karadeniz Pekgöz
Abstract
Radical scavenging activity of the extracts of Lathyrus aphaca L. var. pseudoaphaca (Boiss.) Davis, L. aureus (Stev.) Brandza, L. cicera L., L. sphaericus Retz., L. digitatus (Bieb.) Fiori in Fiori & Paol. and L. setifolius L. taxa distributed in Burdur-Isparta regio was determined. Methanol extracts of air dried aerial parts and the seeds of the plants were dissolved in water and chlorophylls and lipophilic compounds were removed from the aqueous extracts. 2,2-diphenyl-1-picryl hydrazyl, superoxide and nitric oxide radical scavenging activity of aqueous and methanol extracts of the plants were tested. Gallic acid equivalent total phenolic contents of the plant extracts were also detected using Folin-Ciocalteu reagent. According to the 2,2-diphenyl-1-picryl hydrazyl radical scavenging activity test, the highest antioxidant activity was found in aerial parts of L. aphaca var. pseudoaphaca and highest total phenolic content was found as gallic acid equivalent in L. sphaericus seed extracts.
Supporting Institution
Mehmet Akif Ersoy Üniversitesi
Project Number
0086-YL-09
Thanks
Authors are grateful to Assoc. Prof. Hasan Genç from Mehmet Akif Ersoy University Faculty of Education and Assoc. Prof. Neslihan Balpınar from Mehmet Akif Ersoy University Faculty of Science and Art for collection and the authentication of plant material.
References
- [1] Lewis, G. P. 2005. Tribe Acacieae. In: Legumes of the World. Lewis G, Schrire B, Mackinder B, Lock M, eds. Royal Botanic Gardens, Kew: UK, pp: 187–191.
- [2] Ceylan, R., Zengin, G., Guler, G. O., Aktumsek, A. 2020. Bioactive constituents of Lathyrus czeczottianus and ethyl acetate and water extracts and their biological activities: An endemic plant to Turkey. South African Journal of Botany, 1-6.
- [3] Pastor-Cavada, E., Juan, R., Pastor, J. E., Alaiz, M., Vioque, J. 2009. Antioxidant activity of seed polyphenols in fifteen wild Lathyrus species from South Spain. LWT - Food Science and Technology, 42, 705–709.
- [4] Ohtsuki, T., Murai, Y., Iwashina, T., Setoguchi, H. 2013. Geographical differentiation inferred from flavonoid content between coastal and freshwater populations of the coastal plant Lathyrus japonicus (Fabaceae). Biochemical Systematics and Ecology, 51, 243-250.
- [5] Ferreres, F., Magalhães, S. C. Q., Gil-Izquierdo, A., Valentão, P., Cabrita, A. R., Fonseca, A. J., Andrade, P. B. 2017. HPLC-DAD-ESI/MSn profiling of phenolic compounds from Lathyrus cicera L. seeds. Food chemistry, 214, 678-685.
- [6] Llorent-Martínez, E. J., Ortega-Barrales, P., Zengin, G., Mocan, A., Simirgiotis, M. J., Ceylan, R., Uysal, S., Aktumsek, A. 2017. Evaluation of antioxidant potential, enzyme inhibition activity and phenolic profile of Lathyrus cicera and Lathyrus digitatus: Potential sources of bioactive compounds for the food industry. Food and Chemical Toxicology, 107, 609-619.
- [7] Kang, S. S., Ahn, B. T., Kim, J. S., Bae, K. H. 1998. Lathyrus saponin, a new trisaccharide glycoside from Lathyrus japonicus. Journal of Natural Products, 61(2), 299-300.
- [8] Park, S. Y., Kim, J. S., Li, S. Y., Bae, K. H., Kang, S. S. 2008. Chemical constituents of Lathyrus davidii. Natural Product Sciences, 14(4), 281-288.
- [9] Robeson, D. J., Ingham, J. L., Harborne, B. 1980. Identification of two chromone phytoalexins in
the sweet pea, Lathyrus odoratus. Phytochemistry, 19, 2171–2173.
- [10] Karadeniz. A., Erdoğan, N., Genç, H., Emre, İ. 2010. ODAP levels in some Lathyrus species distributed on Burdur-Isparta provinces in Turkey. Genetic Resources and Crop Evolution, 57, 1121-1126.
- [11] Tubives, 2021. Türkiye Bitkileri Veri Servisi (Turkish Plants Data Services). http://www.tubives.com (accessed 1 March 2021, in Turkish).
- [12] Harput, U. S., Genc, Y., Saracoglu, I. 2012. Cytotoxic and antioxidative activities of Plantago lagopus L. and characterization of its bioactive compounds. Food and Chemical Toxicology, 50, 1554–1559.
- [13] Blois, M. S. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181, 1199-1200.
- [14] Kunchandy, E. Rao, M. N. A. 1990. Oxygen radical scavenging activity of curcumin, International Journal of Pharmaceutics, 58, 237–240.
- [15] Tsai, P. Y., Tsai, T. H., Yu, C. H., Ho, S. C. 2007. Comparison of NO-scavenging and NO-suppressing activities of different herbal teas with those of green tea, Food Chemistry, 103, 181-187.
- [16] Singleton, V. L., Rossi, J. A. Jr. 1965. Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158.
- [17] Paquay, J. B. G , Haenen, G. R. M. M., Stender, G., Wiseman, S. A., Tijburg, L. B. M., Bast, A. 2000. Protection against nitric oxide toxicity by tea. Journal of Agriculture and Food Chemistry, 48, 5768-5772.
- [18] Awah, F. M., Uzoegwu, P. N., Ifeonu, P., Oyugi, J. O., Rutherford, J., Yao, X., Fehrmann, F., Fowke, K. R., Eze, M. O. 2012. Free radical scavenging activity, phenolic contents and cytotoxicity of selected Nigerian medicinal plants. Food Chemistry, 131(4), 1279-1286.
- [19] Babbar, N., Oberoi, H. S., Uppal, D. S., Patil, R. T. 2011. Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues. Food Research International, 44(1), 391-396.
- [20] Kusama Eguchi, K., Kusama, T., Suda, A., Masuko, T., Yamamoto, M., Ikegami, F., Igarashi, K., Kuo, Y. H., Lambein, F., Watanabe, K. 2004. Partial involvement of group I metabotropic glutamat receptors in the neurotoxicity of 3-N-oxalyl-L-2, 3- diaminopropionic acid (L-ODAP). Biological and Pharmaceutical Bulletin, 27(7), 1052-1058.
- [21] Kawaguchi, K., Lambein, F., Kusama-Eguchi, K. 2012. Vascular insult accompanied by overexpressed heme oxygenase-1 as a pathophysiological mechanism in experimental neurolathyrism with hind-leg paraparesis. Biochemical and Biophysical Research Communications, 428, 160-166.
- [22] Xiong, Y. C., Xing, G. M., Li, F. M., Wang, S. M., Fan, X. W., Li, Z. X., Wang, Y. F. 2006. Abscisic acid promotes accumulation of toxin ODAP in relation to free spermin level in grass pea seedlings (Lathyrus sativus L.). Plant Physiology and Chemistry, 44, 161-169.
- [23] Arslan, M. 2018. Genetic diversity analysis of low β-ODAP population of grass pea wtih SSR markers. Journal of Biotechnolology 280, Supplement, p:554.
- [24] Kumar, S., Bejiga, G., Ahmed, S., Nakkoul, H., Sarker, A. 2011. Genetic improvement of grass pea for low neurotoxin β-ODAP content. Food and Chemical Toxicology, 49, 589-600.
- [25] Khan, N. A., Kuereshi, S., Pandey, A., Srivastava, A. 2009. Antibacterial activity of seed extracts of commercial and wild Lathyrus species. Turkish Journal of Biology, 33, 165-169.
- [26] Sharma, D., Singh, P., Singh, S. S. 2018. β-N-oxalyl-l-α, β- diaminopropionic acid induces, wound healing by stabilizing HIF-1α and modulating associated protein expression. Phytomedicine, 44, 9-19.
- [27] Gongke, Z., Yingzhen, K., Kairong, C., Zhixiao, L., Yafıu, W. 2001. Hydroxyl radical scavenging activity of β-N-oxalyl-α, β- diaminopropionic acid. Phytochemistry, 58, 759-762.
- [28] Getahun, H., Mekonnen, A., TekleHaimanot, R., Lambein, F. 1999. Epidemic of neurolathyrism in Ethiopia. The Lancet, 354, 306.
- [29] Polignano, G. B., Bisignano, V., Tomasell, V., Uggenti, P., Alba, V., Della Gatta, C. 2009. Genotype X environment interaction in grass pea (Lathyrus sativus L) lines. International Journal of Argonomy, Article ID: 898396, 7 pages.
- [30] Lambein, F., Kuo, Y. H., Kusama-Eguchi, K., Ikegami, F. 2007. 3-N-oxalyl-L-2,3-diaminopropanoic acid, a multifunctional plant metabolite of toxic reputation. ARKIVOC, 9, 45-52.
- [31] Xiong, J., Bai, X., Batool, A., Kong, H. Y., Tan, R., Wang, Y. F., Jiao, C. J., Xiong, Y. 2014. Ecological Function and and application of toxin β-ODAP in grass pea (Lathyrus sativus). Chinese Journal of Applied Ecology 25(4), 1-10.
- [32] Dawei, Z., Gengmei, X., Hui, X., Zeyi, Y., Chongying, W., Yafu, W., Zhixiao, L. 2005. Relationship between oxalic acid and the metabolism of β-N-oxalyl- α,β-diaminopropionic acid (ODAP) in grass pea (Lathyrus sativus L.). Israel Journal of Plant Science, 53, 89-96.
- [33] Djurdjevic, L., Gajic, G., Kostic, O., Jaric, S., Pavlovic, M., Mitrovic, M., Pavlovic, P. 2012. Seasonal dynamics of allelopathically significant
phenolic compounds in globally successful invader Conyza canadensis L. plants and associated sandy soil. Flora, 207, 812-820.
Burdur-Isparta Yöresinde Yayılış Gösteren Bazı Lathyrus Taksonlarının Radikal Süpürücü Aktivitesi
Year 2021,
, 121 - 126, 20.04.2021
Esra Eyiiş
Asuman Karadeniz Pekgöz
Abstract
Burdur-Isparta yöresinde yayılış gösteren Lathyrus aphaca L. var. pseudoaphaca (Boiss.) Davis, L. aureus (Stev.) Brandza, L. cicera L., L. sphaericus Retz., L. digitatus (Bieb.) Fiori in Fiori & Paol. and L. setifolius L. taksonlarına ait ekstraktların radikal süpürücü aktivitesi belirlenmiştir. Kurutulmuş topraküstü kısımları ve tohumlarının metanol ekstraktlarından klorofil ve lipofilik bileşikler uzaklaştırılmıştır. Sulu ve metanol ekstraktlarının 2,2-difenil-1-pikril hidrazil, süperoksit ve nitrik oksit radikali süpürücü aktiviteleri araştırılmıştır. Ayrıca gallik aside eşdeğer toplam fenolik madde miktarı Folin-Ciocalteu reaktifi kullanılarak belirlenmiştir. En yüksek 2,2-difenil-1-pikril hidrazil radikali süpürücü aktivite L. aphaca var. pseudoaphaca’nın topraküstü kısımlarında, en yüksek toplam fenolik madde içeriği gallik aside eşdeğer olarak L. sphaericus’un tohumlarında bulunmuştur.
Project Number
0086-YL-09
References
- [1] Lewis, G. P. 2005. Tribe Acacieae. In: Legumes of the World. Lewis G, Schrire B, Mackinder B, Lock M, eds. Royal Botanic Gardens, Kew: UK, pp: 187–191.
- [2] Ceylan, R., Zengin, G., Guler, G. O., Aktumsek, A. 2020. Bioactive constituents of Lathyrus czeczottianus and ethyl acetate and water extracts and their biological activities: An endemic plant to Turkey. South African Journal of Botany, 1-6.
- [3] Pastor-Cavada, E., Juan, R., Pastor, J. E., Alaiz, M., Vioque, J. 2009. Antioxidant activity of seed polyphenols in fifteen wild Lathyrus species from South Spain. LWT - Food Science and Technology, 42, 705–709.
- [4] Ohtsuki, T., Murai, Y., Iwashina, T., Setoguchi, H. 2013. Geographical differentiation inferred from flavonoid content between coastal and freshwater populations of the coastal plant Lathyrus japonicus (Fabaceae). Biochemical Systematics and Ecology, 51, 243-250.
- [5] Ferreres, F., Magalhães, S. C. Q., Gil-Izquierdo, A., Valentão, P., Cabrita, A. R., Fonseca, A. J., Andrade, P. B. 2017. HPLC-DAD-ESI/MSn profiling of phenolic compounds from Lathyrus cicera L. seeds. Food chemistry, 214, 678-685.
- [6] Llorent-Martínez, E. J., Ortega-Barrales, P., Zengin, G., Mocan, A., Simirgiotis, M. J., Ceylan, R., Uysal, S., Aktumsek, A. 2017. Evaluation of antioxidant potential, enzyme inhibition activity and phenolic profile of Lathyrus cicera and Lathyrus digitatus: Potential sources of bioactive compounds for the food industry. Food and Chemical Toxicology, 107, 609-619.
- [7] Kang, S. S., Ahn, B. T., Kim, J. S., Bae, K. H. 1998. Lathyrus saponin, a new trisaccharide glycoside from Lathyrus japonicus. Journal of Natural Products, 61(2), 299-300.
- [8] Park, S. Y., Kim, J. S., Li, S. Y., Bae, K. H., Kang, S. S. 2008. Chemical constituents of Lathyrus davidii. Natural Product Sciences, 14(4), 281-288.
- [9] Robeson, D. J., Ingham, J. L., Harborne, B. 1980. Identification of two chromone phytoalexins in
the sweet pea, Lathyrus odoratus. Phytochemistry, 19, 2171–2173.
- [10] Karadeniz. A., Erdoğan, N., Genç, H., Emre, İ. 2010. ODAP levels in some Lathyrus species distributed on Burdur-Isparta provinces in Turkey. Genetic Resources and Crop Evolution, 57, 1121-1126.
- [11] Tubives, 2021. Türkiye Bitkileri Veri Servisi (Turkish Plants Data Services). http://www.tubives.com (accessed 1 March 2021, in Turkish).
- [12] Harput, U. S., Genc, Y., Saracoglu, I. 2012. Cytotoxic and antioxidative activities of Plantago lagopus L. and characterization of its bioactive compounds. Food and Chemical Toxicology, 50, 1554–1559.
- [13] Blois, M. S. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181, 1199-1200.
- [14] Kunchandy, E. Rao, M. N. A. 1990. Oxygen radical scavenging activity of curcumin, International Journal of Pharmaceutics, 58, 237–240.
- [15] Tsai, P. Y., Tsai, T. H., Yu, C. H., Ho, S. C. 2007. Comparison of NO-scavenging and NO-suppressing activities of different herbal teas with those of green tea, Food Chemistry, 103, 181-187.
- [16] Singleton, V. L., Rossi, J. A. Jr. 1965. Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158.
- [17] Paquay, J. B. G , Haenen, G. R. M. M., Stender, G., Wiseman, S. A., Tijburg, L. B. M., Bast, A. 2000. Protection against nitric oxide toxicity by tea. Journal of Agriculture and Food Chemistry, 48, 5768-5772.
- [18] Awah, F. M., Uzoegwu, P. N., Ifeonu, P., Oyugi, J. O., Rutherford, J., Yao, X., Fehrmann, F., Fowke, K. R., Eze, M. O. 2012. Free radical scavenging activity, phenolic contents and cytotoxicity of selected Nigerian medicinal plants. Food Chemistry, 131(4), 1279-1286.
- [19] Babbar, N., Oberoi, H. S., Uppal, D. S., Patil, R. T. 2011. Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues. Food Research International, 44(1), 391-396.
- [20] Kusama Eguchi, K., Kusama, T., Suda, A., Masuko, T., Yamamoto, M., Ikegami, F., Igarashi, K., Kuo, Y. H., Lambein, F., Watanabe, K. 2004. Partial involvement of group I metabotropic glutamat receptors in the neurotoxicity of 3-N-oxalyl-L-2, 3- diaminopropionic acid (L-ODAP). Biological and Pharmaceutical Bulletin, 27(7), 1052-1058.
- [21] Kawaguchi, K., Lambein, F., Kusama-Eguchi, K. 2012. Vascular insult accompanied by overexpressed heme oxygenase-1 as a pathophysiological mechanism in experimental neurolathyrism with hind-leg paraparesis. Biochemical and Biophysical Research Communications, 428, 160-166.
- [22] Xiong, Y. C., Xing, G. M., Li, F. M., Wang, S. M., Fan, X. W., Li, Z. X., Wang, Y. F. 2006. Abscisic acid promotes accumulation of toxin ODAP in relation to free spermin level in grass pea seedlings (Lathyrus sativus L.). Plant Physiology and Chemistry, 44, 161-169.
- [23] Arslan, M. 2018. Genetic diversity analysis of low β-ODAP population of grass pea wtih SSR markers. Journal of Biotechnolology 280, Supplement, p:554.
- [24] Kumar, S., Bejiga, G., Ahmed, S., Nakkoul, H., Sarker, A. 2011. Genetic improvement of grass pea for low neurotoxin β-ODAP content. Food and Chemical Toxicology, 49, 589-600.
- [25] Khan, N. A., Kuereshi, S., Pandey, A., Srivastava, A. 2009. Antibacterial activity of seed extracts of commercial and wild Lathyrus species. Turkish Journal of Biology, 33, 165-169.
- [26] Sharma, D., Singh, P., Singh, S. S. 2018. β-N-oxalyl-l-α, β- diaminopropionic acid induces, wound healing by stabilizing HIF-1α and modulating associated protein expression. Phytomedicine, 44, 9-19.
- [27] Gongke, Z., Yingzhen, K., Kairong, C., Zhixiao, L., Yafıu, W. 2001. Hydroxyl radical scavenging activity of β-N-oxalyl-α, β- diaminopropionic acid. Phytochemistry, 58, 759-762.
- [28] Getahun, H., Mekonnen, A., TekleHaimanot, R., Lambein, F. 1999. Epidemic of neurolathyrism in Ethiopia. The Lancet, 354, 306.
- [29] Polignano, G. B., Bisignano, V., Tomasell, V., Uggenti, P., Alba, V., Della Gatta, C. 2009. Genotype X environment interaction in grass pea (Lathyrus sativus L) lines. International Journal of Argonomy, Article ID: 898396, 7 pages.
- [30] Lambein, F., Kuo, Y. H., Kusama-Eguchi, K., Ikegami, F. 2007. 3-N-oxalyl-L-2,3-diaminopropanoic acid, a multifunctional plant metabolite of toxic reputation. ARKIVOC, 9, 45-52.
- [31] Xiong, J., Bai, X., Batool, A., Kong, H. Y., Tan, R., Wang, Y. F., Jiao, C. J., Xiong, Y. 2014. Ecological Function and and application of toxin β-ODAP in grass pea (Lathyrus sativus). Chinese Journal of Applied Ecology 25(4), 1-10.
- [32] Dawei, Z., Gengmei, X., Hui, X., Zeyi, Y., Chongying, W., Yafu, W., Zhixiao, L. 2005. Relationship between oxalic acid and the metabolism of β-N-oxalyl- α,β-diaminopropionic acid (ODAP) in grass pea (Lathyrus sativus L.). Israel Journal of Plant Science, 53, 89-96.
- [33] Djurdjevic, L., Gajic, G., Kostic, O., Jaric, S., Pavlovic, M., Mitrovic, M., Pavlovic, P. 2012. Seasonal dynamics of allelopathically significant
phenolic compounds in globally successful invader Conyza canadensis L. plants and associated sandy soil. Flora, 207, 812-820.