Research Article
BibTex RIS Cite

Active Chitosan/Polycaprolactone Bilayer Films Including D-Limonene and Nanocellulose

Year 2020, , 618 - 625, 25.12.2020
https://doi.org/10.19113/sdufenbed.817932

Abstract

The objective of this study was to evaluate the effect of polycaprolactone (PCL) on the physical and active properties of films when coated on chitosan (CH) film. D-limonene (5%, w/w) and nanocellulose (N) (2%, w/w) were added to CH film solutions, and then coated with PCL to develop active bilayer-films for food packaging applications. Film samples were characterized by permeability tests, optical analysis, antioxidant and antimicrobial activity tests. PCL layer on CH improved the permeability while bilayer films were observed as more opaque. The addition of D-limonene into CH films caused a decrease in the water vapor permeability and light transmittance values of the film samples, however, this decrease was not high those observed in bilayer films. Film samples including D-limonene showed both antioxidant capacity and antimicrobial activity against selected bacteria.

References

  • [1] Abdelhedi, O., Nasri, R., Jridi, M., Kchaou, H., Nasreddine, B., Karbowiak, T., Debeaufort, F., Nasri, M. 2018. Composite bioactive films based on smooth-hound viscera proteins and gelatin: Physicochemical characterization and antioxidant properties. Food Hydrocolloids, 74, 176–186.
  • [2] Jridi, M., Abdelhedi, O., Zouari, N., Fakhfakh, N., Nasri, M. 2019. Development and characterization of grey triggerfish gelatin/agar bilayer and blend films containing vine leaves bioactive compounds. Food Hydrocolloids, 89, 370–378.
  • [3] Haghighi, H., De Leo, R., Bedin, E., Pfeifer, F., Siesler, H. W., Pulvirenti, A. 2019. Comparative analysis of blend and bilayer films based on chitosan and gelatin enriched with LAE (lauroyl arginate ethyl) with antimicrobial activity for food packaging applications. Food Packaging and Shelf Life, 19, 31–39.
  • [4] Cardoso, G. P., Dutra, M. P., Fontes, P. R., Ramos, A. de L.S., de Miranda Gomide, L. A., Ramos, E. M. 2016. Selection of a chitosan gelatin-based edible coating for color preservation of beef in retail display. Meat Science, 114, 85–94.
  • [5] Qiao, C., Ma, X., Zhang, J., Yao, J. 2017. Molecular interactions in gelatin/chitosan composite films. Food Chemistry, 235, 45–50.
  • [6] Leceta, I., Guerrero, P., De La Caba, K. 2013. Functional properties of chitosan-based films, In Carbohydrate Polymers, 1(1), 339-346.
  • [7] Elsabee, M. Z., Abdou, E. S. 2013. Chitosan based edible films and coatings: A review. Materials Science and Engineering C, 33(4), 1819–1841.
  • [8] Bellich, B., D’Agostino, I., Semeraro, S., Gamini, A., Cesàro, A. 2016. “The good, the bad and the ugly” of chitosans. Marine Drugs, 14(5), 99.
  • [9] Ahmed, J., Mulla M., Arfat, Y. A. 2017. Mechanical, thermal, structural and barrier properties of crab shell chitosan/graphene oxide composite films. Food Hydrocolloids, 71, 141–148.
  • [10] Valencia-Sullca, C., Vargas, M., Atarés, L., Chiralt, A. 2018. Thermoplastic cassava starch-chitosan bilayer films containing essential oils. Food Hydrocolloids, 75, 107–115.
  • [11] Söğüt, E., Seydim, A.C. 2018. Characterization of cyclic olefin copolymer-coated chitosan bilayer films containing nanocellulose and grape seed extract. Packaging Technology and Science, 31(7), 499–508.
  • [12] Nilsuwan, K., Guerrero, P., de la Caba, K., Benjakul, S., Prodpran, T. 2020. Properties and application of bilayer films based on poly (lactic acid) and fish gelatin containing epigallocatechin gallate fabricated by thermo-compression molding. Food Hydrocolloids, 105, 105792.
  • [13] Khan, A., Khan, R. A., Salmieri, S., Le Tien, C., Riedl ,B., Bouchard, J., Chauve, G., Tan, V., Kamal, M.R., Lacroix, M. 2012. Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydrate Polymers, 90(4), 1601–1608.
  • [14] Dehnad, D., Mirzaei, H., Emam-Djomeh, Z., Jafari, S. M., Dadashi, S. 2014. Thermal and antimicrobial properties of chitosan-nanocellulose films for extending shelf life of ground meat. Carbohydrate Polymers, 109, 148–154.
  • [15] Khan, A., Huq, T., Khan, R. A., Riedl, B., Lacroix, M. 2014. Nanocellulose-Based Composites and Bioactive Agents for Food Packaging. Critical Reviews in Food Science and Nutrition, 54(2), 163–174.
  • [16] Andresen, M., Stenstad, P., Møretrø, T., Langsrud, S., Syverud, K., Johansson, L. S., Stenius, P. 2007. Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose. Biomacromolecules, 8(7), 2149–2155.
  • [17] Choi, J. G., Kang, O. H., Lee, Y. S., Oh, Y. C., Chae, H. S., Jang, H. J., Shin, D. W., Kwon, D. Y., 2009. Antibacterial activity of methyl gallate isolated from galla rhois or carvacrol combined with nalidixic acid against nalidixic acid resistant bacteria. Molecules, 14(5), 1773–1780.
  • [18] Galus, S., Kadzińska, J. 2015. Food applications of emulsion-based edible films and coatings. Trends in Food Science & Technology, 45(2), 273–283.
  • [19] Ramos, M., Valdes, A., Beltran, A., Garrigós, M. C. 2016. Gelatin-based films and coatings for food packaging applications. Coatings, 6(4), 41.
  • [20] Rivero, S., García M. A., Pinotti, A. 2009. Composite and bi-layer films based on gelatin and chitosan. Journal of Food Engineering, 90(4), 531–539.
  • [21] Sogut, E., Seydim, A. C. 2019. The effects of chitosan-and polycaprolactone-based bilayer films incorporated with grape seed extract and nanocellulose on the quality of chicken breast fillets. LWT, 101, 799–805.
  • [22] Pereda, M., Ponce A. G., Marcovich N. E., Ruseckaite R. A., Martucci, J. F. 2011. Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocolloids, 25(5), 1372–1381.
  • [23] Sharmin, N., Khan, R. A., Salmieri, S., Dussault, D., Lacroix, M. 2012. Fabrication and Characterization of Biodegradable Composite Films Made of Using Poly(caprolactone) Reinforced with Chitosan. Journal of Polymers and the Environment, 20(3), 698–705.
  • [24] Joseph, C. S., Prashanth, K. V. H., Rastogi, N. K., Indiramma, A. R., Reddy, S. Y., Raghavarao, K. S. M. S. 2011. Optimum Blend of Chitosan and Poly-(ε-caprolactone) for Fabrication of Films for Food Packaging Applications. Food and Bioprocess Technology, 4(7), 1179–1185.
  • [25] Alix, S., Mahieu, A., Terrie, C., Soulestin, J., Gerault, E., Feuilloley, M. G. J., Gattin, R., Edon, V., Ait-Younes, T., Leblanc, N. 2013. Active pseudo-multilayered films from polycaprolactone and starch based matrix for food-packaging applications. European Polymer Journal, 49(6), 1234–1242.
  • [26] Gaikwad, K. K., Lee, S. M., Lee, J. S., Lee, Y. S. 2017. Development of antimicrobial polyolefin films containing lauroyl arginate and their use in the packaging of strawberries. Journal of Food Measurement and Characterization, 11(4), 1706–1716.
  • [27] Zhu, J.-Y., Tang, C.-H., Yin, S.-W., Yang, X.-Q. 2018. Development and characterization of novel antimicrobial bilayer films based on Polylactic acid (PLA)/Pickering emulsions. Carbohydrate Polymers, 181, 727–735.
  • [28] Xing, C., Qin, C., Li, X., Zhang, F., Linhardt, R. J., Sun, P., Zhang, A. 2019. Chemical composition and biological activities of essential oil isolated by HS-SPME and UAHD from fruits of bergamot. LWT, 104, 38–44.
  • [29] Settanni, L., Palazzolo, E., Guarrasi, V., Aleo, A., Mammina, C., Moschetti, G., Germanà, M. A. 2012. Inhibition of foodborne pathogen bacteria by essential oils extracted from citrus fruits cultivated in Sicily. Food Control, 26(2), 326–330.
  • [30] Froiio, F., Ginot, L., Paolino, D., Lebaz, N., Bentaher, A., Fessi, H., Elaissari, A. 2019. Essential oils-loaded polymer particles: Preparation, characterization and antimicrobial property. Polymers, 11(6), 1017.
  • [31] Li, P.-H., Chiang, B.-H. 2012. Process optimization and stability of D-limonene-in-water nanoemulsions prepared by ultrasonic emulsification using response surface methodology. Ultrasonics Sonochemistry, 19(1), 192–197.
  • [32] Anonim, 2016. ASTM, 95AD, Standard Test Methods for Water Vapor Transmission of Materials. Annual Book of ASTM, 552, 12.
  • [33] Friesen, K., Chang, C., Nickerson, M. 2015. Incorporation of phenolic compounds, rutin and epicatechin, into soy protein isolate films: Mechanical, barrier and cross-linking properties. Food Chemistry, 172, 18–23.
  • [34] Sánchez-Moreno, C., Larrauri, J. A., Saura-Calixto, F. 1998. A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture, 76(2), 270–276.
  • [35] Cao, N., Yang, X., Fu, Y. 2009. Effects of various plasticizers on mechanical and water vapor barrier properties of gelatin films. Food Hydrocolloids, 23(3), 729–735.
  • [36] McHugh, T.H., Avena‐Bustillos, R., Krochta, J. M. 1993. Hydrophilic edible films: modified procedure for water vapor permeability and explanation of thickness effects. Journal of Food Science, 58(4), 899–903.
  • [37] Salgado, P. R., D’Amico, D. A., Seoane, I. T., Iglesias Montes, M., Mauri, A. N., Cyras, V. P. 2021. Improvement of water barrier properties of soybean protein isolate films by poly (3‐hydroxybutyrate) thin coating. Journal of Applied Polymer Science, 138(5), 49758.
  • [38] Sogut, E., Cakmak, H. 2020. Utilization of carrot (daucus carota l.) Fiber as a filler for chitosan based films. Food Hydrocolloids, 106, 105861.
  • [39] Wu, J., Sun, X., Guo, X., Ge, S., Zhang, Q. 2017. Physicochemical properties, antimicrobial activity and oil release of fish gelatin films incorporated with cinnamon essential oil. Aquaculture and Fisheries, 2(4), 185–192.
  • [40] Ahmed, S., Ikram, S. 2016. Chitosan and gelatin based biodegradable packaging films with UV-light protection. Journal of Photochemistry and Photobiology B: Biology, 163, 115–124.
  • [41] Kanmani, P., Rhim, J.-W. 2014. Antimicrobial and physical-mechanical properties of agar-based films incorporated with grapefruit seed extract. Carbohydrate Polymers, 102, 708–716.
  • [42] Yen, M.-T., Yang, J.-H., Mau, J.-L. 2008. Antioxidant properties of chitosan from crab shells. Carbohydrate Polymers, 74(4), 840–844.
  • [43] Han, Y., Sun, Z., Chen, W. 2020. Antimicrobial susceptibility and antibacterial mechanism of limonene against Listeria monocytogenes. Molecules, 25(1), 33.

D-Limonen ve Nanoselüloz İçeren Aktif Kitosan/Polikaprolakton İki Katmanlı Filmler

Year 2020, , 618 - 625, 25.12.2020
https://doi.org/10.19113/sdufenbed.817932

Abstract

Bu çalışmanın amacı, polikaprolaktonun (PCL), kitosan (CH) film üzerine kaplandığında, PCL ikinci katmanının filmlerin fiziksel, antioksidan ve antimikrobiyal özellikleri üzerine etkisini değerlendirmektir. D-limonen (%5, w/w) ve nanoselüloz (N) (%2, w/w), CH film çözeltilerine ilave edilmiş ve daha sonra gıda ambalajlama uygulamaları için PCL ile kaplanarak aktif çift katmanlı filmler elde edilmiştir. Film örnekleri optik analiz, geçirgenlik testleri, antioksidan ve antimikrobiyal aktivite testleri ile karakterize edilmiştir. CH üzerindeki PCL katmanı filmlerin su buharı geçirgenliğini geliştirirken, çift katmanlı filmler daha opak olarak gözlenmiştir. CH filmlere D-limonen ilave edilmesi, film örneklerinin su buharı ve ışık geçirgenlik değerlerinde azalışa neden olmuştur ancak bu azalış iki katmanlı filmlerde gözlenen azalış kadar yüksek değildir. D-limonen içeren film örnekleri hem antioksidan kapasite hem de seçilen bakterilere karşı antimikrobiyal aktivite göstermiştir.

References

  • [1] Abdelhedi, O., Nasri, R., Jridi, M., Kchaou, H., Nasreddine, B., Karbowiak, T., Debeaufort, F., Nasri, M. 2018. Composite bioactive films based on smooth-hound viscera proteins and gelatin: Physicochemical characterization and antioxidant properties. Food Hydrocolloids, 74, 176–186.
  • [2] Jridi, M., Abdelhedi, O., Zouari, N., Fakhfakh, N., Nasri, M. 2019. Development and characterization of grey triggerfish gelatin/agar bilayer and blend films containing vine leaves bioactive compounds. Food Hydrocolloids, 89, 370–378.
  • [3] Haghighi, H., De Leo, R., Bedin, E., Pfeifer, F., Siesler, H. W., Pulvirenti, A. 2019. Comparative analysis of blend and bilayer films based on chitosan and gelatin enriched with LAE (lauroyl arginate ethyl) with antimicrobial activity for food packaging applications. Food Packaging and Shelf Life, 19, 31–39.
  • [4] Cardoso, G. P., Dutra, M. P., Fontes, P. R., Ramos, A. de L.S., de Miranda Gomide, L. A., Ramos, E. M. 2016. Selection of a chitosan gelatin-based edible coating for color preservation of beef in retail display. Meat Science, 114, 85–94.
  • [5] Qiao, C., Ma, X., Zhang, J., Yao, J. 2017. Molecular interactions in gelatin/chitosan composite films. Food Chemistry, 235, 45–50.
  • [6] Leceta, I., Guerrero, P., De La Caba, K. 2013. Functional properties of chitosan-based films, In Carbohydrate Polymers, 1(1), 339-346.
  • [7] Elsabee, M. Z., Abdou, E. S. 2013. Chitosan based edible films and coatings: A review. Materials Science and Engineering C, 33(4), 1819–1841.
  • [8] Bellich, B., D’Agostino, I., Semeraro, S., Gamini, A., Cesàro, A. 2016. “The good, the bad and the ugly” of chitosans. Marine Drugs, 14(5), 99.
  • [9] Ahmed, J., Mulla M., Arfat, Y. A. 2017. Mechanical, thermal, structural and barrier properties of crab shell chitosan/graphene oxide composite films. Food Hydrocolloids, 71, 141–148.
  • [10] Valencia-Sullca, C., Vargas, M., Atarés, L., Chiralt, A. 2018. Thermoplastic cassava starch-chitosan bilayer films containing essential oils. Food Hydrocolloids, 75, 107–115.
  • [11] Söğüt, E., Seydim, A.C. 2018. Characterization of cyclic olefin copolymer-coated chitosan bilayer films containing nanocellulose and grape seed extract. Packaging Technology and Science, 31(7), 499–508.
  • [12] Nilsuwan, K., Guerrero, P., de la Caba, K., Benjakul, S., Prodpran, T. 2020. Properties and application of bilayer films based on poly (lactic acid) and fish gelatin containing epigallocatechin gallate fabricated by thermo-compression molding. Food Hydrocolloids, 105, 105792.
  • [13] Khan, A., Khan, R. A., Salmieri, S., Le Tien, C., Riedl ,B., Bouchard, J., Chauve, G., Tan, V., Kamal, M.R., Lacroix, M. 2012. Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydrate Polymers, 90(4), 1601–1608.
  • [14] Dehnad, D., Mirzaei, H., Emam-Djomeh, Z., Jafari, S. M., Dadashi, S. 2014. Thermal and antimicrobial properties of chitosan-nanocellulose films for extending shelf life of ground meat. Carbohydrate Polymers, 109, 148–154.
  • [15] Khan, A., Huq, T., Khan, R. A., Riedl, B., Lacroix, M. 2014. Nanocellulose-Based Composites and Bioactive Agents for Food Packaging. Critical Reviews in Food Science and Nutrition, 54(2), 163–174.
  • [16] Andresen, M., Stenstad, P., Møretrø, T., Langsrud, S., Syverud, K., Johansson, L. S., Stenius, P. 2007. Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose. Biomacromolecules, 8(7), 2149–2155.
  • [17] Choi, J. G., Kang, O. H., Lee, Y. S., Oh, Y. C., Chae, H. S., Jang, H. J., Shin, D. W., Kwon, D. Y., 2009. Antibacterial activity of methyl gallate isolated from galla rhois or carvacrol combined with nalidixic acid against nalidixic acid resistant bacteria. Molecules, 14(5), 1773–1780.
  • [18] Galus, S., Kadzińska, J. 2015. Food applications of emulsion-based edible films and coatings. Trends in Food Science & Technology, 45(2), 273–283.
  • [19] Ramos, M., Valdes, A., Beltran, A., Garrigós, M. C. 2016. Gelatin-based films and coatings for food packaging applications. Coatings, 6(4), 41.
  • [20] Rivero, S., García M. A., Pinotti, A. 2009. Composite and bi-layer films based on gelatin and chitosan. Journal of Food Engineering, 90(4), 531–539.
  • [21] Sogut, E., Seydim, A. C. 2019. The effects of chitosan-and polycaprolactone-based bilayer films incorporated with grape seed extract and nanocellulose on the quality of chicken breast fillets. LWT, 101, 799–805.
  • [22] Pereda, M., Ponce A. G., Marcovich N. E., Ruseckaite R. A., Martucci, J. F. 2011. Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocolloids, 25(5), 1372–1381.
  • [23] Sharmin, N., Khan, R. A., Salmieri, S., Dussault, D., Lacroix, M. 2012. Fabrication and Characterization of Biodegradable Composite Films Made of Using Poly(caprolactone) Reinforced with Chitosan. Journal of Polymers and the Environment, 20(3), 698–705.
  • [24] Joseph, C. S., Prashanth, K. V. H., Rastogi, N. K., Indiramma, A. R., Reddy, S. Y., Raghavarao, K. S. M. S. 2011. Optimum Blend of Chitosan and Poly-(ε-caprolactone) for Fabrication of Films for Food Packaging Applications. Food and Bioprocess Technology, 4(7), 1179–1185.
  • [25] Alix, S., Mahieu, A., Terrie, C., Soulestin, J., Gerault, E., Feuilloley, M. G. J., Gattin, R., Edon, V., Ait-Younes, T., Leblanc, N. 2013. Active pseudo-multilayered films from polycaprolactone and starch based matrix for food-packaging applications. European Polymer Journal, 49(6), 1234–1242.
  • [26] Gaikwad, K. K., Lee, S. M., Lee, J. S., Lee, Y. S. 2017. Development of antimicrobial polyolefin films containing lauroyl arginate and their use in the packaging of strawberries. Journal of Food Measurement and Characterization, 11(4), 1706–1716.
  • [27] Zhu, J.-Y., Tang, C.-H., Yin, S.-W., Yang, X.-Q. 2018. Development and characterization of novel antimicrobial bilayer films based on Polylactic acid (PLA)/Pickering emulsions. Carbohydrate Polymers, 181, 727–735.
  • [28] Xing, C., Qin, C., Li, X., Zhang, F., Linhardt, R. J., Sun, P., Zhang, A. 2019. Chemical composition and biological activities of essential oil isolated by HS-SPME and UAHD from fruits of bergamot. LWT, 104, 38–44.
  • [29] Settanni, L., Palazzolo, E., Guarrasi, V., Aleo, A., Mammina, C., Moschetti, G., Germanà, M. A. 2012. Inhibition of foodborne pathogen bacteria by essential oils extracted from citrus fruits cultivated in Sicily. Food Control, 26(2), 326–330.
  • [30] Froiio, F., Ginot, L., Paolino, D., Lebaz, N., Bentaher, A., Fessi, H., Elaissari, A. 2019. Essential oils-loaded polymer particles: Preparation, characterization and antimicrobial property. Polymers, 11(6), 1017.
  • [31] Li, P.-H., Chiang, B.-H. 2012. Process optimization and stability of D-limonene-in-water nanoemulsions prepared by ultrasonic emulsification using response surface methodology. Ultrasonics Sonochemistry, 19(1), 192–197.
  • [32] Anonim, 2016. ASTM, 95AD, Standard Test Methods for Water Vapor Transmission of Materials. Annual Book of ASTM, 552, 12.
  • [33] Friesen, K., Chang, C., Nickerson, M. 2015. Incorporation of phenolic compounds, rutin and epicatechin, into soy protein isolate films: Mechanical, barrier and cross-linking properties. Food Chemistry, 172, 18–23.
  • [34] Sánchez-Moreno, C., Larrauri, J. A., Saura-Calixto, F. 1998. A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture, 76(2), 270–276.
  • [35] Cao, N., Yang, X., Fu, Y. 2009. Effects of various plasticizers on mechanical and water vapor barrier properties of gelatin films. Food Hydrocolloids, 23(3), 729–735.
  • [36] McHugh, T.H., Avena‐Bustillos, R., Krochta, J. M. 1993. Hydrophilic edible films: modified procedure for water vapor permeability and explanation of thickness effects. Journal of Food Science, 58(4), 899–903.
  • [37] Salgado, P. R., D’Amico, D. A., Seoane, I. T., Iglesias Montes, M., Mauri, A. N., Cyras, V. P. 2021. Improvement of water barrier properties of soybean protein isolate films by poly (3‐hydroxybutyrate) thin coating. Journal of Applied Polymer Science, 138(5), 49758.
  • [38] Sogut, E., Cakmak, H. 2020. Utilization of carrot (daucus carota l.) Fiber as a filler for chitosan based films. Food Hydrocolloids, 106, 105861.
  • [39] Wu, J., Sun, X., Guo, X., Ge, S., Zhang, Q. 2017. Physicochemical properties, antimicrobial activity and oil release of fish gelatin films incorporated with cinnamon essential oil. Aquaculture and Fisheries, 2(4), 185–192.
  • [40] Ahmed, S., Ikram, S. 2016. Chitosan and gelatin based biodegradable packaging films with UV-light protection. Journal of Photochemistry and Photobiology B: Biology, 163, 115–124.
  • [41] Kanmani, P., Rhim, J.-W. 2014. Antimicrobial and physical-mechanical properties of agar-based films incorporated with grapefruit seed extract. Carbohydrate Polymers, 102, 708–716.
  • [42] Yen, M.-T., Yang, J.-H., Mau, J.-L. 2008. Antioxidant properties of chitosan from crab shells. Carbohydrate Polymers, 74(4), 840–844.
  • [43] Han, Y., Sun, Z., Chen, W. 2020. Antimicrobial susceptibility and antibacterial mechanism of limonene against Listeria monocytogenes. Molecules, 25(1), 33.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ece Söğüt 0000-0003-4052-993X

Atıf Can Seydim 0000-0003-3808-509X

Publication Date December 25, 2020
Published in Issue Year 2020

Cite

APA Söğüt, E., & Seydim, A. C. (2020). D-Limonen ve Nanoselüloz İçeren Aktif Kitosan/Polikaprolakton İki Katmanlı Filmler. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(3), 618-625. https://doi.org/10.19113/sdufenbed.817932
AMA Söğüt E, Seydim AC. D-Limonen ve Nanoselüloz İçeren Aktif Kitosan/Polikaprolakton İki Katmanlı Filmler. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. December 2020;24(3):618-625. doi:10.19113/sdufenbed.817932
Chicago Söğüt, Ece, and Atıf Can Seydim. “D-Limonen Ve Nanoselüloz İçeren Aktif Kitosan/Polikaprolakton İki Katmanlı Filmler”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24, no. 3 (December 2020): 618-25. https://doi.org/10.19113/sdufenbed.817932.
EndNote Söğüt E, Seydim AC (December 1, 2020) D-Limonen ve Nanoselüloz İçeren Aktif Kitosan/Polikaprolakton İki Katmanlı Filmler. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24 3 618–625.
IEEE E. Söğüt and A. C. Seydim, “D-Limonen ve Nanoselüloz İçeren Aktif Kitosan/Polikaprolakton İki Katmanlı Filmler”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., vol. 24, no. 3, pp. 618–625, 2020, doi: 10.19113/sdufenbed.817932.
ISNAD Söğüt, Ece - Seydim, Atıf Can. “D-Limonen Ve Nanoselüloz İçeren Aktif Kitosan/Polikaprolakton İki Katmanlı Filmler”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24/3 (December 2020), 618-625. https://doi.org/10.19113/sdufenbed.817932.
JAMA Söğüt E, Seydim AC. D-Limonen ve Nanoselüloz İçeren Aktif Kitosan/Polikaprolakton İki Katmanlı Filmler. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2020;24:618–625.
MLA Söğüt, Ece and Atıf Can Seydim. “D-Limonen Ve Nanoselüloz İçeren Aktif Kitosan/Polikaprolakton İki Katmanlı Filmler”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 24, no. 3, 2020, pp. 618-25, doi:10.19113/sdufenbed.817932.
Vancouver Söğüt E, Seydim AC. D-Limonen ve Nanoselüloz İçeren Aktif Kitosan/Polikaprolakton İki Katmanlı Filmler. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2020;24(3):618-25.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.