Research Article
BibTex RIS Cite

Thermodynamic Characterization of Al-10Si-xMg Alloy with CALPHAD Methodology

Year 2021, , 699 - 704, 30.12.2021
https://doi.org/10.19113/sdufenbed.983458

Abstract

Aluminum and its alloys are widely used in the automotive, aerospace space, and defence industries due to their low density, high specific strength, corrosion resistance, high electrical and thermal conductivity properties. Generally, heat treatment and deformation processes are applied in aluminum alloys in order to increase the strength of the materials. A significant increase in strength can be achieved in aluminum alloys with the addition of magnesium and copper as alloying elements. The properties of the materials vary depending on their chemical compositions, processes, and microstructures. In this modeling and simulation study, the effect of varying wt.% Mg ratios in Al-10Si-xMg alloy on the material was investigated and thermodynamic analyzes were carried out using the CALPHAD methodology. TCAL7.1 aluminum database in the Thermo-Calc software version 2021a was used in the modelling and simulation studies. The effect of varying wt.% Mg ratio in Al-10Si-xMg alloy on liquidus, solidus, and eutectic reaction temperatures observed in Al-Si alloys was investigated. In addition, it is thought to contribute to the Turkish literature by determining the formation temperatures and amounts of Mg2Si precipitates, which increase strength with heat treatment.

References

  • [1] Ahn, C., Jo, I., Ji, C., Cho, S., Mishra, B., Lee, E. 2020. Creep behavior of high-pressure die-cast AlSi10MnMg aluminum alloy. Materials Characterization, 167, 110495.
  • [2] Babaremu, K. O., Joseph, O. O., Akinlabi, E. T., Jen, T. C., Oladijo, O. P. 2020. Morphological investigation and mechanical behaviour of agrowaste reinforced aluminium alloy 8011 for service life improvement. Heliyon, 6(11), e05506.
  • [3] Georgantzia, E., Gkantou, M., Kamaris, G. S. 2021. Aluminium alloys as structural material: A review of research. Engineering Structures, 227, 111372.
  • [4] Vijayakumar, M., Dhinakaran, V., Sathish, T., Muthu, G. 2021. Experimental study of chemical composition of aluminium alloys. Materials Today: Proceedings, 37, 1790-1793.
  • [5] Yamanoğlu, R., Karakulak, E., Zeren, A., Zeren, M. 2013. Effect of heat treatment on the tribological properties of Al–Cu–Mg/nanoSiC composites. Materials & Design, 49, 820-825.
  • [6] Hadadzadeh, A., Amirkhiz, B. S., Shakerin, S., Kelly, J., Li, J., Mohammadi, M. 2020. Microstructural investigation and mechanical behavior of a two-material component fabricated through selective laser melting of AlSi10Mg on an Al-Cu-Ni-Fe-Mg cast alloy substrate. Additive Manufacturing, 31, 100937.
  • [7] Rafieazad, M., Mohammadi, M., Gerlich, A., Nasiri, A. 2021. Enhancing the corrosion properties of additively manufactured AlSi10Mg using friction stir processing. Corrosion Science, 178, 109073.
  • [8] Wei, P., Chen, Z., Zhang, S., Fang, X., Lu, B., Zhang, L., Wei, Z. 2021. Effect of T6 heat treatment on the surface tribological and corrosion properties of AlSi10Mg samples produced by selective laser melting. Materials Characterization, 171, 110769.
  • [9] Gao, Y. H., Kuang, J., Zhang, J. Y., Liu, G., Sun, J. 2020. Tailoring precipitation strategy to optimize microstructural evolution, aging hardening and creep resistance in an Al–Cu–Sc alloy by isochronal aging. Materials Science and Engineering, A 795, 139943.
  • [10] Karakulak, E., Zeren, M., Yamanoğlu, R. 2013. Effect of heat treatment conditions on microstructure and wear behaviour of Al4Cu2Ni2Mg alloy. Transactions of Nonferrous Metals Society of China, 23(7), 1898-1904.
  • [11] Kuchariková, L., Tillová, E., Chalupová, M., Hanusová, P. 2020. Investigation on microstructural and hardness evaluation in heat-treated and as-cast state of secondary AlSiMg cast alloys. Materials Today: Proceedings, 32, 63-67.
  • [12] Chou, C.-Y., Hsu, C.-W., Lee, S.-L., Wang K.-W., Lin, J.-C. 2008. Effects of heat treatments on AA6061 aluminum alloy deformed by cross-channel extrusion. Journal of materials processing technology, 202(1-3), 1-6.
  • [13] Wu, Y., Xiong, J., Lai, R., Zhang, X., Guo, Z. 2009. The microstructure evolution of an Al–Mg–Si–Mn–Cu–Ce alloy during homogenization. Journal of Alloys and Compounds, 475(1-2), 332-338.
  • [14] Yan, L.-Z., Zhang, Y.-A., Li, X.-W., Li, Z.-H., Feng, W., Liu, H.-W., Xiong, B.-Q. 2014. Microstructural evolution of Al–0.66 Mg–0.85 Si alloy during homogenization. Transactions of Nonferrous Metals Society of China, 24(4), 939-945.
  • [15] Yang, H., Ji, S., Yang, W., Wang, Y., Fan, Z. 2015. Effect of Mg level on the microstructure and mechanical properties of die-cast Al–Si–Cu alloys. Materials Science and Engineering, A 642, 340-350.
  • [16] Dons, A. L. 2001. The Alstruc homogenization model for industrial aluminum alloys. Journal of light Metals, 1(2), 133-149.
  • [17] Milkereit, B., Froeck, H., Schick, C., Kessler, O. 2014. Continuous cooling precipitation diagram of cast aluminium alloy Al-7Si-0.3Mg. Transactions of Nonferrous Metals Society of China, 24(7), 2025-2033.
  • [18] Sjölander, E., Seifeddine, S. 2010. The heat treatment of Al–Si–Cu–Mg casting alloys. Journal of Materials Processing Technology, 210(10), 1249-1259.
  • [19] Ågren, J. 1996. Calculation of phase diagrams: Calphad. Current opinion in solid state and materials science, 1(3), 355-360.
  • [20] Jha, R., Dulikravich, G. S. 2020. Solidification and heat treatment simulation for aluminum alloys with scandium addition through CALPHAD approach. Computational Materials Science, 182, 109749.
  • [21] Fabrichnaya, O., Saxena, S. K., Richet P., Westrum, E. F. 2004. Thermodynamic data, models, and phase diagrams in multicomponent oxide systems: An Assessment for Materials and Planetary Scientists Based on Calorimetric, Volumetric and Phase Equilibrium Data. Springer Science & Business Media.
  • [22] Sieniutycz, S. 2016. Thermodynamic approaches in engineering systems. Elsevier. 738s.
  • [23] Yamanoğlu, R., Akyıldız, Y., Öztürk, O. 2021. AlSi10Mg Alaşımının Toz Metalurjisi ile Üretimi: Basınç Destekli Sinterleme ve Calphad Metodolojisi. International Symposium of Scientific Research and Innovative Studies, Bandırma Onyedi Eylül Üniversitesi.
  • [24] Liu, C., Shi, Q., Yan, W., Shen, C., Yang, K., Shan, Y., Zhao, M. 2019. Designing a high Si reduced activation ferritic/martensitic steel for nuclear power generation by using Calphad method. Journal of materials science & technology, 35(3), 266-274.
  • [25] Pelton, A. D. 2018. Phase diagrams and thermodynamic modeling of solutions. Academic Press. 401s.

Al-10Si-xMg Alaşımının CALPHAD Metodolojisi ile Termodinamik Karakterizasyonu

Year 2021, , 699 - 704, 30.12.2021
https://doi.org/10.19113/sdufenbed.983458

Abstract

Alüminyum ve alaşımları düşük yoğunluk, yüksek spesifik mukavemet, korozyon dayanımı, yüksek elektriksel ve ısıl iletkenlik özelliklerinden dolayı otomotiv, havacılık ve uzay, savunma sanayilerinde yaygın olarak kullanılmaktadırlar. Genellikle malzemelerin mukavemetlerinin artırılması bakımından, alüminyum alaşımlarında ısıl işlem ve deformasyon prosesleri uygulanmaktadır. Magnezyum ve bakır alaşım elementlerinin ilavesi ile alüminyum alaşımlarında kayda değer bir mukavemet artışı sağlanabilmektedir. Malzemelerin özellikleri; malzemelerin kimyasal kompozisyonlarına, proseslerine ve mikroyapılarına bağlı olarak değişmektedir. Bu modelleme ve simülasyon çalışmasında, Al-10Si-xMg alaşımında değişen % ağırlıkça Mg oranlarının malzeme üzerindeki etkisi incelenmiş ve CALPHAD metodolojisinin kullanımı ile termodinamik analizleri gerçekleştirilmiştir. Modelleme ve simülasyon çalışmalarında Thermo-Calc yazılımı 2021a versiyonundaki TCAL7.1 alüminyum veri tabanı kullanılmıştır. Al-10Si-xMg alaşımında değişen % ağırlıkça Mg oranının liküdüs, solidüs ve Al-Si alaşımlarında görülen ötektik reaksiyon sıcaklıklarına etkisi incelenmiştir. Ayrıca ısıl işlem ile mukavemet artışı sağlayan Mg2Si çökeltilerinin oluşum sıcaklıkları ve miktarları belirlenerek Türkçe literatüre katkı sağlanması düşünülmüştür.

References

  • [1] Ahn, C., Jo, I., Ji, C., Cho, S., Mishra, B., Lee, E. 2020. Creep behavior of high-pressure die-cast AlSi10MnMg aluminum alloy. Materials Characterization, 167, 110495.
  • [2] Babaremu, K. O., Joseph, O. O., Akinlabi, E. T., Jen, T. C., Oladijo, O. P. 2020. Morphological investigation and mechanical behaviour of agrowaste reinforced aluminium alloy 8011 for service life improvement. Heliyon, 6(11), e05506.
  • [3] Georgantzia, E., Gkantou, M., Kamaris, G. S. 2021. Aluminium alloys as structural material: A review of research. Engineering Structures, 227, 111372.
  • [4] Vijayakumar, M., Dhinakaran, V., Sathish, T., Muthu, G. 2021. Experimental study of chemical composition of aluminium alloys. Materials Today: Proceedings, 37, 1790-1793.
  • [5] Yamanoğlu, R., Karakulak, E., Zeren, A., Zeren, M. 2013. Effect of heat treatment on the tribological properties of Al–Cu–Mg/nanoSiC composites. Materials & Design, 49, 820-825.
  • [6] Hadadzadeh, A., Amirkhiz, B. S., Shakerin, S., Kelly, J., Li, J., Mohammadi, M. 2020. Microstructural investigation and mechanical behavior of a two-material component fabricated through selective laser melting of AlSi10Mg on an Al-Cu-Ni-Fe-Mg cast alloy substrate. Additive Manufacturing, 31, 100937.
  • [7] Rafieazad, M., Mohammadi, M., Gerlich, A., Nasiri, A. 2021. Enhancing the corrosion properties of additively manufactured AlSi10Mg using friction stir processing. Corrosion Science, 178, 109073.
  • [8] Wei, P., Chen, Z., Zhang, S., Fang, X., Lu, B., Zhang, L., Wei, Z. 2021. Effect of T6 heat treatment on the surface tribological and corrosion properties of AlSi10Mg samples produced by selective laser melting. Materials Characterization, 171, 110769.
  • [9] Gao, Y. H., Kuang, J., Zhang, J. Y., Liu, G., Sun, J. 2020. Tailoring precipitation strategy to optimize microstructural evolution, aging hardening and creep resistance in an Al–Cu–Sc alloy by isochronal aging. Materials Science and Engineering, A 795, 139943.
  • [10] Karakulak, E., Zeren, M., Yamanoğlu, R. 2013. Effect of heat treatment conditions on microstructure and wear behaviour of Al4Cu2Ni2Mg alloy. Transactions of Nonferrous Metals Society of China, 23(7), 1898-1904.
  • [11] Kuchariková, L., Tillová, E., Chalupová, M., Hanusová, P. 2020. Investigation on microstructural and hardness evaluation in heat-treated and as-cast state of secondary AlSiMg cast alloys. Materials Today: Proceedings, 32, 63-67.
  • [12] Chou, C.-Y., Hsu, C.-W., Lee, S.-L., Wang K.-W., Lin, J.-C. 2008. Effects of heat treatments on AA6061 aluminum alloy deformed by cross-channel extrusion. Journal of materials processing technology, 202(1-3), 1-6.
  • [13] Wu, Y., Xiong, J., Lai, R., Zhang, X., Guo, Z. 2009. The microstructure evolution of an Al–Mg–Si–Mn–Cu–Ce alloy during homogenization. Journal of Alloys and Compounds, 475(1-2), 332-338.
  • [14] Yan, L.-Z., Zhang, Y.-A., Li, X.-W., Li, Z.-H., Feng, W., Liu, H.-W., Xiong, B.-Q. 2014. Microstructural evolution of Al–0.66 Mg–0.85 Si alloy during homogenization. Transactions of Nonferrous Metals Society of China, 24(4), 939-945.
  • [15] Yang, H., Ji, S., Yang, W., Wang, Y., Fan, Z. 2015. Effect of Mg level on the microstructure and mechanical properties of die-cast Al–Si–Cu alloys. Materials Science and Engineering, A 642, 340-350.
  • [16] Dons, A. L. 2001. The Alstruc homogenization model for industrial aluminum alloys. Journal of light Metals, 1(2), 133-149.
  • [17] Milkereit, B., Froeck, H., Schick, C., Kessler, O. 2014. Continuous cooling precipitation diagram of cast aluminium alloy Al-7Si-0.3Mg. Transactions of Nonferrous Metals Society of China, 24(7), 2025-2033.
  • [18] Sjölander, E., Seifeddine, S. 2010. The heat treatment of Al–Si–Cu–Mg casting alloys. Journal of Materials Processing Technology, 210(10), 1249-1259.
  • [19] Ågren, J. 1996. Calculation of phase diagrams: Calphad. Current opinion in solid state and materials science, 1(3), 355-360.
  • [20] Jha, R., Dulikravich, G. S. 2020. Solidification and heat treatment simulation for aluminum alloys with scandium addition through CALPHAD approach. Computational Materials Science, 182, 109749.
  • [21] Fabrichnaya, O., Saxena, S. K., Richet P., Westrum, E. F. 2004. Thermodynamic data, models, and phase diagrams in multicomponent oxide systems: An Assessment for Materials and Planetary Scientists Based on Calorimetric, Volumetric and Phase Equilibrium Data. Springer Science & Business Media.
  • [22] Sieniutycz, S. 2016. Thermodynamic approaches in engineering systems. Elsevier. 738s.
  • [23] Yamanoğlu, R., Akyıldız, Y., Öztürk, O. 2021. AlSi10Mg Alaşımının Toz Metalurjisi ile Üretimi: Basınç Destekli Sinterleme ve Calphad Metodolojisi. International Symposium of Scientific Research and Innovative Studies, Bandırma Onyedi Eylül Üniversitesi.
  • [24] Liu, C., Shi, Q., Yan, W., Shen, C., Yang, K., Shan, Y., Zhao, M. 2019. Designing a high Si reduced activation ferritic/martensitic steel for nuclear power generation by using Calphad method. Journal of materials science & technology, 35(3), 266-274.
  • [25] Pelton, A. D. 2018. Phase diagrams and thermodynamic modeling of solutions. Academic Press. 401s.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Yağız Akyıldız 0000-0001-6012-9795

Onur Öztürk This is me 0000-0003-3196-194X

Bartu Simsar 0000-0003-1041-6504

Publication Date December 30, 2021
Published in Issue Year 2021

Cite

APA Akyıldız, Y., Öztürk, O., & Simsar, B. (2021). Al-10Si-xMg Alaşımının CALPHAD Metodolojisi ile Termodinamik Karakterizasyonu. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(3), 699-704. https://doi.org/10.19113/sdufenbed.983458
AMA Akyıldız Y, Öztürk O, Simsar B. Al-10Si-xMg Alaşımının CALPHAD Metodolojisi ile Termodinamik Karakterizasyonu. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. December 2021;25(3):699-704. doi:10.19113/sdufenbed.983458
Chicago Akyıldız, Yağız, Onur Öztürk, and Bartu Simsar. “Al-10Si-XMg Alaşımının CALPHAD Metodolojisi Ile Termodinamik Karakterizasyonu”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25, no. 3 (December 2021): 699-704. https://doi.org/10.19113/sdufenbed.983458.
EndNote Akyıldız Y, Öztürk O, Simsar B (December 1, 2021) Al-10Si-xMg Alaşımının CALPHAD Metodolojisi ile Termodinamik Karakterizasyonu. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25 3 699–704.
IEEE Y. Akyıldız, O. Öztürk, and B. Simsar, “Al-10Si-xMg Alaşımının CALPHAD Metodolojisi ile Termodinamik Karakterizasyonu”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., vol. 25, no. 3, pp. 699–704, 2021, doi: 10.19113/sdufenbed.983458.
ISNAD Akyıldız, Yağız et al. “Al-10Si-XMg Alaşımının CALPHAD Metodolojisi Ile Termodinamik Karakterizasyonu”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25/3 (December 2021), 699-704. https://doi.org/10.19113/sdufenbed.983458.
JAMA Akyıldız Y, Öztürk O, Simsar B. Al-10Si-xMg Alaşımının CALPHAD Metodolojisi ile Termodinamik Karakterizasyonu. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2021;25:699–704.
MLA Akyıldız, Yağız et al. “Al-10Si-XMg Alaşımının CALPHAD Metodolojisi Ile Termodinamik Karakterizasyonu”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 25, no. 3, 2021, pp. 699-04, doi:10.19113/sdufenbed.983458.
Vancouver Akyıldız Y, Öztürk O, Simsar B. Al-10Si-xMg Alaşımının CALPHAD Metodolojisi ile Termodinamik Karakterizasyonu. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2021;25(3):699-704.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.