BibTex RIS Cite

The Effect of Metal Thickness on Si Wire to Plasmonic Slot Waveguide Mode Conversion

Year 2018, Volume: 22 Issue: 1, 70 - 74, 16.04.2018

Abstract

We investigate mode converters for Si wire to plasmonic slot waveguides at 1550 nm telecom wavelength. The structures are based on a taper geometry. We provide optimal dimensions with more than 90\% power transmission for a range of metal (Au) thicknesses between 30-250 nm. We provide details on how to differentiate between the total power and the power in the main mode of the plasmonic slot waveguide. Our analysis is based on the orthogonality of modes of the slot waveguide subject to a suitable inner product definition. Our results are relevant for lowering the insertion loss and the bit error rate of plasmonic modulators.

References

  • [1] Yamada, K. 2011. Silicon PhotonicWireWaveguides: Fundamentals and Applications. Silicon Photonics II: Components and Integration, Springer, Berlin, ss 1–29.
  • [2] Thomson, D., Zilkie, A., Bowers, J. E., Komljenovic, T., Reed, G. T., Vivien, L., Marris-Morini, D., Cassan, E., Virot, L., Fédéli, J.-M., Hartmann, J.-M., Schmid, J. H., Xu, D.-X., Boeuf, F., O’Brien, P., Mashanovich, G. Z., Nedeljkovic, M. 2016. Roadmap on silicon photonics. Journal of Optics, 18(2016), 073003.
  • [3] Melikyan, A., Alloatti, L., Muslija, A., Hillerkuss, D., Schindler, P.C., Li, J., Palmer, R., Korn, D., Muehlbrandt, S., Thourhout, D. V., Chen, B., Dinu, R., Sommer, M., Koos, C., Kohl, M., Freude, W., Leuthold J. 2014. Highspeed plasmonic phase modulators. Nature Photonics, 8(2014), 229–233.
  • [4] Haffner, C., Heni, W., Fedoryshyn, Y., Josten, A., Baeuerle, B., Hoessbacher, C., Salamin, Y., Koch, U., Dordevic, N., Mousel, P., Bonjour, R., Emboras, A., Hillerkuss, D., Leuchtmann, P., Elder, D. L., Dalton, L. R., Hafner, C., Leuthold, J. 2016. Plasmonic organic hybrid modulators—scaling highest speed photonics to the microscale. Proceedings of the IEEE, 104(2016), 2362–2379.
  • [5] Hoessbacher, C., Josten, A., Baeuerle, B., Fedoryshyn, Y., Hettrich, H., Salamin, Y., Heni, W., Haffner, C., Kaiser, C., Schmid, R., Elder, D. L., Hillerkuss, D., Möller, M., Dalton, L. R., Leuthold, J. 2017. Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ. Optics Express, 25(2017), 1762–1768.
  • [6] Tian, J., Yu, S., Yan, W., Qiu, M. 2009. Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface. Applied Physics Letters, 95(2009), 013504.
  • [7] Han, Z., Elezzabi, A. Y., Van, V. 2010. Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform. Optics Letters, 35(2010), 502–504.
  • [8] Chen, C.-T., Xu, X., Hosseini, A., Pan, Z., Subbaraman, H., Zhang, X., Chen, R. T. 2015. Design of highly efficient hybrid Si-Au taper for dielectric strip waveguide to plasmonic slot waveguide mode converter. Journal of Lightwave Technology, 33(2015), 535–540.
  • [9] Zhu, B. Q., Tsang, H. K. 2016. High coupling efficiency silicon waveguide to metal–insulator–metal waveguide mode converter. Journal of Lightwave Technology, 34(2016), 2467–2472.
  • [10] Ono, M., Taniyama, H., Xu, H., Tsunekawa, M., Kuramochi, E., Nozaki, K., Notomi, M. 2016. Deep-subwavelength plasmonic mode converter with large size reduction for Si-wire waveguide. Optica, 3(2016), 999–1005.
  • [11] Veronis, G., Fan, S. H. 2007. Modes of subwavelength plasmonic slot waveguides. Journal of Lightwave Technology, 25(2007), 2511–2521.
  • [12] Kewes, G., Schoengen, M., Neitzke, O., Lombardi, P., Schönfeld, R.-S., Mazzamuto, G., Schell, A. W., Probst, J., Wolters, J., Löchel, B., Toninelli, C., Benson, O. 2016. A realistic fabrication and design concept for quantum gates based on single emitters integrated in plasmonic dielectric waveguide structures. Scientific Reports, 6(2016), 28877.
  • [13] Palik, E. D. 1985. Handbook of optical constants of solids. Vol. 1. Academic Press, London, 804s.
  • [14] Kitamura, R., Pilon, L., Jonasz, M. 2007. Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Applied Optics, 46(2007), 8118–8133.
  • [15] McPeak, K. M., Jayanti, S. V., Kress, S. J. P., Meyer, S., Iotti, S., Rossinelli, A., Norris, D. J. 2015. Plasmonic films can easily be better: Rules and recipes. ACS Photonics, 2(2015), 326–333.
  • [16] Yang, J., Hugonin, J.-P., Lalanne, P. 2016. Near-to-far field transformations for radiative and guided waves. ACS Photonics, 3(2016), 395–402.
  • [17] Ji, X., Barbosa, F. A. S., Roberts, S. P., Dutt, A., Cardenas, J., Okawachi, Y., Bryant, A., Gaeta, A. L., Lipson, M. 2017. Ultra-low-loss on chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 4(2017), 619–624.
  • [18] Veronis G., Fan, S. 2007. Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides. Optics Express, 15(2007), 1211–1221.
Year 2018, Volume: 22 Issue: 1, 70 - 74, 16.04.2018

Abstract

References

  • [1] Yamada, K. 2011. Silicon PhotonicWireWaveguides: Fundamentals and Applications. Silicon Photonics II: Components and Integration, Springer, Berlin, ss 1–29.
  • [2] Thomson, D., Zilkie, A., Bowers, J. E., Komljenovic, T., Reed, G. T., Vivien, L., Marris-Morini, D., Cassan, E., Virot, L., Fédéli, J.-M., Hartmann, J.-M., Schmid, J. H., Xu, D.-X., Boeuf, F., O’Brien, P., Mashanovich, G. Z., Nedeljkovic, M. 2016. Roadmap on silicon photonics. Journal of Optics, 18(2016), 073003.
  • [3] Melikyan, A., Alloatti, L., Muslija, A., Hillerkuss, D., Schindler, P.C., Li, J., Palmer, R., Korn, D., Muehlbrandt, S., Thourhout, D. V., Chen, B., Dinu, R., Sommer, M., Koos, C., Kohl, M., Freude, W., Leuthold J. 2014. Highspeed plasmonic phase modulators. Nature Photonics, 8(2014), 229–233.
  • [4] Haffner, C., Heni, W., Fedoryshyn, Y., Josten, A., Baeuerle, B., Hoessbacher, C., Salamin, Y., Koch, U., Dordevic, N., Mousel, P., Bonjour, R., Emboras, A., Hillerkuss, D., Leuchtmann, P., Elder, D. L., Dalton, L. R., Hafner, C., Leuthold, J. 2016. Plasmonic organic hybrid modulators—scaling highest speed photonics to the microscale. Proceedings of the IEEE, 104(2016), 2362–2379.
  • [5] Hoessbacher, C., Josten, A., Baeuerle, B., Fedoryshyn, Y., Hettrich, H., Salamin, Y., Heni, W., Haffner, C., Kaiser, C., Schmid, R., Elder, D. L., Hillerkuss, D., Möller, M., Dalton, L. R., Leuthold, J. 2017. Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ. Optics Express, 25(2017), 1762–1768.
  • [6] Tian, J., Yu, S., Yan, W., Qiu, M. 2009. Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface. Applied Physics Letters, 95(2009), 013504.
  • [7] Han, Z., Elezzabi, A. Y., Van, V. 2010. Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform. Optics Letters, 35(2010), 502–504.
  • [8] Chen, C.-T., Xu, X., Hosseini, A., Pan, Z., Subbaraman, H., Zhang, X., Chen, R. T. 2015. Design of highly efficient hybrid Si-Au taper for dielectric strip waveguide to plasmonic slot waveguide mode converter. Journal of Lightwave Technology, 33(2015), 535–540.
  • [9] Zhu, B. Q., Tsang, H. K. 2016. High coupling efficiency silicon waveguide to metal–insulator–metal waveguide mode converter. Journal of Lightwave Technology, 34(2016), 2467–2472.
  • [10] Ono, M., Taniyama, H., Xu, H., Tsunekawa, M., Kuramochi, E., Nozaki, K., Notomi, M. 2016. Deep-subwavelength plasmonic mode converter with large size reduction for Si-wire waveguide. Optica, 3(2016), 999–1005.
  • [11] Veronis, G., Fan, S. H. 2007. Modes of subwavelength plasmonic slot waveguides. Journal of Lightwave Technology, 25(2007), 2511–2521.
  • [12] Kewes, G., Schoengen, M., Neitzke, O., Lombardi, P., Schönfeld, R.-S., Mazzamuto, G., Schell, A. W., Probst, J., Wolters, J., Löchel, B., Toninelli, C., Benson, O. 2016. A realistic fabrication and design concept for quantum gates based on single emitters integrated in plasmonic dielectric waveguide structures. Scientific Reports, 6(2016), 28877.
  • [13] Palik, E. D. 1985. Handbook of optical constants of solids. Vol. 1. Academic Press, London, 804s.
  • [14] Kitamura, R., Pilon, L., Jonasz, M. 2007. Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Applied Optics, 46(2007), 8118–8133.
  • [15] McPeak, K. M., Jayanti, S. V., Kress, S. J. P., Meyer, S., Iotti, S., Rossinelli, A., Norris, D. J. 2015. Plasmonic films can easily be better: Rules and recipes. ACS Photonics, 2(2015), 326–333.
  • [16] Yang, J., Hugonin, J.-P., Lalanne, P. 2016. Near-to-far field transformations for radiative and guided waves. ACS Photonics, 3(2016), 395–402.
  • [17] Ji, X., Barbosa, F. A. S., Roberts, S. P., Dutt, A., Cardenas, J., Okawachi, Y., Bryant, A., Gaeta, A. L., Lipson, M. 2017. Ultra-low-loss on chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 4(2017), 619–624.
  • [18] Veronis G., Fan, S. 2007. Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides. Optics Express, 15(2007), 1211–1221.
There are 18 citations in total.

Details

Journal Section Articles
Authors

Şükrü Ekin Kocabaş This is me

Publication Date April 16, 2018
Published in Issue Year 2018 Volume: 22 Issue: 1

Cite

APA Kocabaş, Ş. E. (2018). The Effect of Metal Thickness on Si Wire to Plasmonic Slot Waveguide Mode Conversion. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(1), 70-74. https://doi.org/10.19113/sdufbed.88342
AMA Kocabaş ŞE. The Effect of Metal Thickness on Si Wire to Plasmonic Slot Waveguide Mode Conversion. J. Nat. Appl. Sci. April 2018;22(1):70-74. doi:10.19113/sdufbed.88342
Chicago Kocabaş, Şükrü Ekin. “The Effect of Metal Thickness on Si Wire to Plasmonic Slot Waveguide Mode Conversion”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, no. 1 (April 2018): 70-74. https://doi.org/10.19113/sdufbed.88342.
EndNote Kocabaş ŞE (April 1, 2018) The Effect of Metal Thickness on Si Wire to Plasmonic Slot Waveguide Mode Conversion. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 1 70–74.
IEEE Ş. E. Kocabaş, “The Effect of Metal Thickness on Si Wire to Plasmonic Slot Waveguide Mode Conversion”, J. Nat. Appl. Sci., vol. 22, no. 1, pp. 70–74, 2018, doi: 10.19113/sdufbed.88342.
ISNAD Kocabaş, Şükrü Ekin. “The Effect of Metal Thickness on Si Wire to Plasmonic Slot Waveguide Mode Conversion”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/1 (April 2018), 70-74. https://doi.org/10.19113/sdufbed.88342.
JAMA Kocabaş ŞE. The Effect of Metal Thickness on Si Wire to Plasmonic Slot Waveguide Mode Conversion. J. Nat. Appl. Sci. 2018;22:70–74.
MLA Kocabaş, Şükrü Ekin. “The Effect of Metal Thickness on Si Wire to Plasmonic Slot Waveguide Mode Conversion”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 22, no. 1, 2018, pp. 70-74, doi:10.19113/sdufbed.88342.
Vancouver Kocabaş ŞE. The Effect of Metal Thickness on Si Wire to Plasmonic Slot Waveguide Mode Conversion. J. Nat. Appl. Sci. 2018;22(1):70-4.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.