BibTex RIS Cite

Paladyum Komplekslerine Dayalı İyodür-Seçici Karbon Pasta Elektrot Hazırlanması

Year 2018, Volume: 22 Issue: 1, 237 - 246, 16.04.2018
https://doi.org/10.19113/sdufbed.82321

Abstract

Dibromo[1,1′-bis(difenilfosfin)ferrosen] paladyum(II) (iyonofor I) ve dikloro[1,1′-bis(difenilfosfin)ferrosen] paladyum(II) (iyonofor II) olarak adlandırılan paladyum komplekslerinin kullanıldığı yeni iyodür-seçici karbon pasta elektrotlar hazırlandı. İyonofor I ve II kullanılarak optimum karbon pasta bileşimiyle hazırlanan elektrotların pH 4,0’da sırasıyla −43,2 ± 0,6 mV/pI ve −43,8 ± 0,6 mV/pI eğimle, 3,5×10−6 M ve 3,7×10−7 M gözlenebilme sınırıyla, 1,0×10−5 − 1,0×10−1 M ve 1,0×10−6 − 1,0×10−1 M derişim aralığında doğrusal cevap verdikleri gözlendi. Önerilen elektrotların kısa cevap sürelerine, 3 aylık ömre, iyi bir tekrarlanabilirlik ve üretilebilirliğe sahip oldukları bulundu. Ayrıca, elektrotlar, iyodür içeren ilaç numunelerinde iyodürün potansiyometrik tayini için indikatör elektrot olarak başarılı bir şekilde kullanıldı.

References

  • [1] Motlagh, M. G., Taher, M. A., Ahmadi, K., Sheikhshoaie, I. 2011. Iodide selective membrane electrodes based on a Molybdenum–Salen as a neutral carrier. Materials Science and Engineering, C 31, 1625–1631.
  • [2] Nagy, X., Höfler, L. 2016. Lowering Detection Limits Toward Target Ions Using Quasi-Symmetric Polymeric Ion-Selective Membranes Combined with Amperometric Measurements. Anal Chem., 88 (19), 9850–9855.
  • [3] Anderson, K. A., Casey, B., Diaz, E., Markowski, P., Wright, B. 1996. Speciation and determination of dissolved iodide and iodine in environmental aqueous samples by inductively coupled plasma atomic emission spectrometry. J. AOAC Int., 79, 751–756.
  • [4] Larsen, E. H., Ludwigsen, M. B. 1997. Determination of iodine in food-related certified reference materials using wet ashing and detection by inductively coupled plasma mass spectrometry. J. Anal. Atom. Spectrom., 72, 435–439.
  • [5] Yebra, M.C. ve Cespon, R. M. 2000. Indirect automatic determination of iodide by flame atomic absorption spectrometry. Analytica Chimica Acta, 405, 191-196.
  • [6] Haase, O., Broekaert, J. A. C. 2002. Development of an on-line procedure for the indirect determination of iodide by flow-injection cold-vapor atomic absorption spectrometry. Spectrochim. Acta B, 57, 157–165.
  • [7] Kamavisdar, A., Patel, R. M. 2002. Flow injection spectrophotometric determination of iodide in environmental samples. Microchim. Acta, 140, 119–124.
  • [8] Hu, W., Yang, P. J., Hasebe, K., Haddad, P. R., Tanaka, K. 2002. Rapid and direct determination of iodide in seawater by electrostatic ion chromatography. J. Chromatogr. A, 956, 103-107.
  • [9] Ito, K., Ichihara, T., Zhuo, H., Kumamoto, K., Timerbaev, A. R., Hirokawa, T. 2003. Determination of trace iodide in seawater by capillary electrophoresis following transient isotachophoretic preconcentration: Comparison with ion chromatography. Analytica Chimica Acta, 497, 67-74.
  • [10] Han, X., Cao, L., Cheng, H., Liub, J., Xu, Z. 2012. Determination of iodine species in seaweed and seawater samples using ion-pair reversed phase high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry. Analytical Methods, 4, 3471-3477.
  • [11] Yang, S. X., Fu, S. J., Wang, M. L. 1991. Determination of trace iodine in food and biological samples by cathodic stripping voltammetry. Anal Chem., 63, 2970–2973.
  • [12] Fujiwara, T., Inoue, H., Mohammadzai, I. U., Kumamaru, T. 2000. Chemiluminescence determination of iodide and/or iodine using a luminol-hexadecyltrimethylammonium chloride reversed micelle system following on-line oxidation and extraction. Analyst, 125, 759–763.
  • [13] Choengchan, N., Uraisin, K., Choden, K., Veerasai, W., Grudpan, K., Nacapricha, D. 2002. Simple flow injection system for colorimetric determination of iodate in iodized salt. Talanta, 58, 1195-1201.
  • [14] Hakedal, J. T., Egeberg, P. K. 1997. Determination of iodide in brines by membrane permeation flow injection analysis. Analyst, 122, 1235–1238.
  • [15] Nacapricha, D., Ratanawimarnwong, K., Grudpan, K. 2004. Simple and selective method for determination of iodide in pharmaceutical products by flow injection analysis using the iodine-starch reaction. Anal Bioanal Chem., 378, 816–821.
  • [16] Ratanawimarnwong, N., Amornthammarong, N., Choengchan, N., Chaisuwan, P., Amatatongchai, M., Wilairat, P., McKelvie, I. D., Nacapricha, D. 2005. Determination of iodide by detection of iodine using gas-diffusion flow injection and chemiluminescence. Talanta, 65, 756–761.
  • [17] Benvidi, A., Ghanbarzadeh, M. T., Mazloum-Ardakani, M., Vafazadeh, R. 2011. Iodide-selective polymeric membrane electrode based on copper(II) bis(N-2-bromophenylsalicyldenaminato)complex. Chinese Chemical Letters, 22, 1087–1090.
  • [18] Göver, T., Kormalı Ertürün, H.E., Demirel Özel, A., Erdemir, S., Canel, E. 2016. İyonofor olarak bir kaliks[4]aren türevinin kullanıldığı iyodür-seçici PVC Membran Elektrot, DOI: 10.19113/sdufbed.83711.
  • [19] Mazloum, M., Salavati-Niassary, M., Chahooki, S. H. M., Amini, M. K. 2002. Silver-selective coated-wire electrode based onresorc[4]arene neutral carrier. Electroanalysis, 14(5), 376-381.
  • [20] Ardakani, M. M., Ensafi, A. A., Niasari, M. S. 2003. Silver(I)-selective coated-wire electrode based on an octahydroxycalix[4]arene derivative. Anal Sci., 19, 1187-1190.
  • [21] Golabi, S. M., Mohammadi, J. 2003. Wire-coated silver (I) ion-selective electrode based on 2-mercaptobenzothiazole (MBT) ionophore: Application to the determination of silver in real samples. Anal Sci., 19, 877-881.
  • [22] Abbaspour, A., Izadyar, A., Sharghi, H. 2004. Carbon composition PVC based membrane in a highly selective and sensitive coated-wire electrode for silver ion. Analytica Chimica Acta, 525, 91-96.
  • [23] Sil, A., Ijeri, V. S., Srivastava, A. K. 2001. Coated-wire silver ion-selective electrode based on silver complex of cyclam. Anal Sci., 17, 477-479.
  • [24] Atwood, J. L. ve Steed, J. W. 1997. Supramolecular Chemistry of Anions. Wiley-VCH, New York, 148s.
  • [25] O’Connor, K. M., Cherry, M., Svehla, G., Harris, S. J., McKervey, M. A. 1994. Symmetrical, unsymmetrical and bridged calyx[4]arene derivatives as neutral carrier ionophores in PVC membrane sodium selective electrodes. Talanta, 41(7), 1207-1217.
  • [26] Diamond, D., Nolan, K. 2001. Calixarenes: designer ligands for chemical sensors. Anal Chem., 73(1), 22-29A.
  • [27] Amini, M. K., Ghaedi, M., Mohammad, A. R., Habibi, H., Zohory, M. M. 2003. Iodide Selective Electrodes Based on Bis(2-mercaptobenzo- thiazolato) Mercury(II) and Bis(4-chlorothiophenolato) Mercury(II) Carriers. Sensors, 3, 509-523.
  • [28] Zare, H. R., Memarzadeh, F., Gorji, A., Ardakani, M. M. 2005. Iodide-selective Membrane Electrode Based on Salophen Complex of Cobalt (III). J. Braz. Chem. Soc., 16, 571-577.
  • [29] Mortazavi, K., Ghaedi, M., Tehrani, M. S., Montazerozohori, M. 2015. The Influencenanoscale material on response properties of iodide selective electrodes. IEEE SENSORS JOURNAL, 15, 322-332.
  • [30] Vytras, K., Ježková, J., Skocepa, J. 1998. Some aspects of the use of heteropoly anions in elemental analysis by simple potentiometric ion-pair formation-based titration. Talanta, 46, 1619-1622.
  • [31] Stanic, Z. ve Girousi, S. 2011. Carbon Paste Electrodes in Potentiometry: The State of the Art and Applications Modern Electroanalysis (A Review). Sensing in Electroanalysis, 6, 89-128.
  • [32] Yavaş, A. 2014. Karbon pasta elektrotların bitki dokuları ile modifikasyonu ve elektrokataliz özelliklerinin incelenmesi. Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü Kimya Anabilim dalı, Yüksek Lisans Tezi, 80s, İzmir.
  • [33] Gismera, M. J., Hueso, D., Procopio, J. R., Sevilla, A. T. 2004. Ion-selective Carbon Paste Electrode Based on Tetraethyl thiuram disulfide for copper(II) and mercury(II). Analytica Chimica Acta, 524, 347-353.
  • [34] Shamsipur, M., Soleymanpour, A., Akhond, M., Sharghi, H., Naseri, M. A. 2001. Iodide-selective Carbon Paste Electrodes Based on Recently Synthesized Schiff Base Complexes of Fe(III). Analytica Chimica Acta, 450, 37-44.
  • [35] IUPAC Recommendations. 1994. Recommendations for nomenclature of ion-selective electrodes. Pure&Appl. Chem., 66, 2527-2536.
  • [36] Zolotov, Y. A. 1997. Macrocyclic Compounds in Analytical Chemistry. Wiley, New York, 424s.
  • [37] Amemiya, S., Bühlmann, P., Umezawa, Y. 1998. A phase boundary potential model for apparently “twice-nernstian” responses of liquid membrane ion-selective electrodes. Anal Chem., 70, 445-454.
  • [38] Somer, G., Kalaycı, Ş., Ekmekci, G. 2001. Preparation and application of iodide-mercury selective membrane electrode based on ion exchangers. Sensor Actuat B-Chem., 81, 122-127.
  • [39] Zahran, E. M., Hua, Y., Lee, S., Flood, A. H., Bachas, L. G. 2011. Ion-selective electrodes based on a pyridyl-containing triazolophane: altering halide selectivity by combining dipole-promoted cooperativity with hydrogen bonding. Anal Chem., 83, 3455-3461.
  • [40] Ghaedi, M., Montazerozohori, M., Behfar, M., Marahel, F. 2011b. Influence of Multiwalled Carbon Nanotubes on The Response Performance of Carbon Paste Iodide Ion-selective Electrode Based on Iron(II) phthalocyanine. International Journal of Electrochemical Science, 6, 6074-6084.
  • [41] Abbas, M. N. 2003. Chemically modified carbon paste electrode for iodide determination on the basis of cetyrtrimethylammonium iodide ion pair. Analytical Sciences, 19, 229-233.
  • [42] Mitchell-Koch, J. T., Pietrzak, M., Malinowska, E., Meyerhoff, M. E. 2006. Aluminum(III) porphyrins as ionophores for fluoride selective polymeric membrane electrodes. Electroanalysis, 18(6), 551-557.
  • [43] Ghaedi, M., Montazerozohori, M., Mortazavi, K., Behfar, M., Marahel. F. 2011a. Iodide–Selective Electrodes Based on Two New Carriers: Influence of Various Nanoparticle Materials on the Response Performance of proposed electrodes. International Journal of Electrochemical Science, 6, 6682-6698.
  • [44] Mortazavi, K., Ghaedi, M., Montazerozohori, M., Andikaey, Z. 2011. Iodide–selective Electrodes Based on Bis(Trans-Cinnamaldehyde)1,3-Propanediimine Mercury (II) Chloride [BCPHgCl2] and Bis(Trans-Cinnamaldehyde)-1,3-Propandiimine Cadmium(II) Chloride [BCPCdCl2] Carriers: Influence of Multiwalled Carbon Nanotubes on the Response Performance. International Journal of Electrochemical Science, 6, 4250-4263.
Year 2018, Volume: 22 Issue: 1, 237 - 246, 16.04.2018
https://doi.org/10.19113/sdufbed.82321

Abstract

References

  • [1] Motlagh, M. G., Taher, M. A., Ahmadi, K., Sheikhshoaie, I. 2011. Iodide selective membrane electrodes based on a Molybdenum–Salen as a neutral carrier. Materials Science and Engineering, C 31, 1625–1631.
  • [2] Nagy, X., Höfler, L. 2016. Lowering Detection Limits Toward Target Ions Using Quasi-Symmetric Polymeric Ion-Selective Membranes Combined with Amperometric Measurements. Anal Chem., 88 (19), 9850–9855.
  • [3] Anderson, K. A., Casey, B., Diaz, E., Markowski, P., Wright, B. 1996. Speciation and determination of dissolved iodide and iodine in environmental aqueous samples by inductively coupled plasma atomic emission spectrometry. J. AOAC Int., 79, 751–756.
  • [4] Larsen, E. H., Ludwigsen, M. B. 1997. Determination of iodine in food-related certified reference materials using wet ashing and detection by inductively coupled plasma mass spectrometry. J. Anal. Atom. Spectrom., 72, 435–439.
  • [5] Yebra, M.C. ve Cespon, R. M. 2000. Indirect automatic determination of iodide by flame atomic absorption spectrometry. Analytica Chimica Acta, 405, 191-196.
  • [6] Haase, O., Broekaert, J. A. C. 2002. Development of an on-line procedure for the indirect determination of iodide by flow-injection cold-vapor atomic absorption spectrometry. Spectrochim. Acta B, 57, 157–165.
  • [7] Kamavisdar, A., Patel, R. M. 2002. Flow injection spectrophotometric determination of iodide in environmental samples. Microchim. Acta, 140, 119–124.
  • [8] Hu, W., Yang, P. J., Hasebe, K., Haddad, P. R., Tanaka, K. 2002. Rapid and direct determination of iodide in seawater by electrostatic ion chromatography. J. Chromatogr. A, 956, 103-107.
  • [9] Ito, K., Ichihara, T., Zhuo, H., Kumamoto, K., Timerbaev, A. R., Hirokawa, T. 2003. Determination of trace iodide in seawater by capillary electrophoresis following transient isotachophoretic preconcentration: Comparison with ion chromatography. Analytica Chimica Acta, 497, 67-74.
  • [10] Han, X., Cao, L., Cheng, H., Liub, J., Xu, Z. 2012. Determination of iodine species in seaweed and seawater samples using ion-pair reversed phase high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry. Analytical Methods, 4, 3471-3477.
  • [11] Yang, S. X., Fu, S. J., Wang, M. L. 1991. Determination of trace iodine in food and biological samples by cathodic stripping voltammetry. Anal Chem., 63, 2970–2973.
  • [12] Fujiwara, T., Inoue, H., Mohammadzai, I. U., Kumamaru, T. 2000. Chemiluminescence determination of iodide and/or iodine using a luminol-hexadecyltrimethylammonium chloride reversed micelle system following on-line oxidation and extraction. Analyst, 125, 759–763.
  • [13] Choengchan, N., Uraisin, K., Choden, K., Veerasai, W., Grudpan, K., Nacapricha, D. 2002. Simple flow injection system for colorimetric determination of iodate in iodized salt. Talanta, 58, 1195-1201.
  • [14] Hakedal, J. T., Egeberg, P. K. 1997. Determination of iodide in brines by membrane permeation flow injection analysis. Analyst, 122, 1235–1238.
  • [15] Nacapricha, D., Ratanawimarnwong, K., Grudpan, K. 2004. Simple and selective method for determination of iodide in pharmaceutical products by flow injection analysis using the iodine-starch reaction. Anal Bioanal Chem., 378, 816–821.
  • [16] Ratanawimarnwong, N., Amornthammarong, N., Choengchan, N., Chaisuwan, P., Amatatongchai, M., Wilairat, P., McKelvie, I. D., Nacapricha, D. 2005. Determination of iodide by detection of iodine using gas-diffusion flow injection and chemiluminescence. Talanta, 65, 756–761.
  • [17] Benvidi, A., Ghanbarzadeh, M. T., Mazloum-Ardakani, M., Vafazadeh, R. 2011. Iodide-selective polymeric membrane electrode based on copper(II) bis(N-2-bromophenylsalicyldenaminato)complex. Chinese Chemical Letters, 22, 1087–1090.
  • [18] Göver, T., Kormalı Ertürün, H.E., Demirel Özel, A., Erdemir, S., Canel, E. 2016. İyonofor olarak bir kaliks[4]aren türevinin kullanıldığı iyodür-seçici PVC Membran Elektrot, DOI: 10.19113/sdufbed.83711.
  • [19] Mazloum, M., Salavati-Niassary, M., Chahooki, S. H. M., Amini, M. K. 2002. Silver-selective coated-wire electrode based onresorc[4]arene neutral carrier. Electroanalysis, 14(5), 376-381.
  • [20] Ardakani, M. M., Ensafi, A. A., Niasari, M. S. 2003. Silver(I)-selective coated-wire electrode based on an octahydroxycalix[4]arene derivative. Anal Sci., 19, 1187-1190.
  • [21] Golabi, S. M., Mohammadi, J. 2003. Wire-coated silver (I) ion-selective electrode based on 2-mercaptobenzothiazole (MBT) ionophore: Application to the determination of silver in real samples. Anal Sci., 19, 877-881.
  • [22] Abbaspour, A., Izadyar, A., Sharghi, H. 2004. Carbon composition PVC based membrane in a highly selective and sensitive coated-wire electrode for silver ion. Analytica Chimica Acta, 525, 91-96.
  • [23] Sil, A., Ijeri, V. S., Srivastava, A. K. 2001. Coated-wire silver ion-selective electrode based on silver complex of cyclam. Anal Sci., 17, 477-479.
  • [24] Atwood, J. L. ve Steed, J. W. 1997. Supramolecular Chemistry of Anions. Wiley-VCH, New York, 148s.
  • [25] O’Connor, K. M., Cherry, M., Svehla, G., Harris, S. J., McKervey, M. A. 1994. Symmetrical, unsymmetrical and bridged calyx[4]arene derivatives as neutral carrier ionophores in PVC membrane sodium selective electrodes. Talanta, 41(7), 1207-1217.
  • [26] Diamond, D., Nolan, K. 2001. Calixarenes: designer ligands for chemical sensors. Anal Chem., 73(1), 22-29A.
  • [27] Amini, M. K., Ghaedi, M., Mohammad, A. R., Habibi, H., Zohory, M. M. 2003. Iodide Selective Electrodes Based on Bis(2-mercaptobenzo- thiazolato) Mercury(II) and Bis(4-chlorothiophenolato) Mercury(II) Carriers. Sensors, 3, 509-523.
  • [28] Zare, H. R., Memarzadeh, F., Gorji, A., Ardakani, M. M. 2005. Iodide-selective Membrane Electrode Based on Salophen Complex of Cobalt (III). J. Braz. Chem. Soc., 16, 571-577.
  • [29] Mortazavi, K., Ghaedi, M., Tehrani, M. S., Montazerozohori, M. 2015. The Influencenanoscale material on response properties of iodide selective electrodes. IEEE SENSORS JOURNAL, 15, 322-332.
  • [30] Vytras, K., Ježková, J., Skocepa, J. 1998. Some aspects of the use of heteropoly anions in elemental analysis by simple potentiometric ion-pair formation-based titration. Talanta, 46, 1619-1622.
  • [31] Stanic, Z. ve Girousi, S. 2011. Carbon Paste Electrodes in Potentiometry: The State of the Art and Applications Modern Electroanalysis (A Review). Sensing in Electroanalysis, 6, 89-128.
  • [32] Yavaş, A. 2014. Karbon pasta elektrotların bitki dokuları ile modifikasyonu ve elektrokataliz özelliklerinin incelenmesi. Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü Kimya Anabilim dalı, Yüksek Lisans Tezi, 80s, İzmir.
  • [33] Gismera, M. J., Hueso, D., Procopio, J. R., Sevilla, A. T. 2004. Ion-selective Carbon Paste Electrode Based on Tetraethyl thiuram disulfide for copper(II) and mercury(II). Analytica Chimica Acta, 524, 347-353.
  • [34] Shamsipur, M., Soleymanpour, A., Akhond, M., Sharghi, H., Naseri, M. A. 2001. Iodide-selective Carbon Paste Electrodes Based on Recently Synthesized Schiff Base Complexes of Fe(III). Analytica Chimica Acta, 450, 37-44.
  • [35] IUPAC Recommendations. 1994. Recommendations for nomenclature of ion-selective electrodes. Pure&Appl. Chem., 66, 2527-2536.
  • [36] Zolotov, Y. A. 1997. Macrocyclic Compounds in Analytical Chemistry. Wiley, New York, 424s.
  • [37] Amemiya, S., Bühlmann, P., Umezawa, Y. 1998. A phase boundary potential model for apparently “twice-nernstian” responses of liquid membrane ion-selective electrodes. Anal Chem., 70, 445-454.
  • [38] Somer, G., Kalaycı, Ş., Ekmekci, G. 2001. Preparation and application of iodide-mercury selective membrane electrode based on ion exchangers. Sensor Actuat B-Chem., 81, 122-127.
  • [39] Zahran, E. M., Hua, Y., Lee, S., Flood, A. H., Bachas, L. G. 2011. Ion-selective electrodes based on a pyridyl-containing triazolophane: altering halide selectivity by combining dipole-promoted cooperativity with hydrogen bonding. Anal Chem., 83, 3455-3461.
  • [40] Ghaedi, M., Montazerozohori, M., Behfar, M., Marahel, F. 2011b. Influence of Multiwalled Carbon Nanotubes on The Response Performance of Carbon Paste Iodide Ion-selective Electrode Based on Iron(II) phthalocyanine. International Journal of Electrochemical Science, 6, 6074-6084.
  • [41] Abbas, M. N. 2003. Chemically modified carbon paste electrode for iodide determination on the basis of cetyrtrimethylammonium iodide ion pair. Analytical Sciences, 19, 229-233.
  • [42] Mitchell-Koch, J. T., Pietrzak, M., Malinowska, E., Meyerhoff, M. E. 2006. Aluminum(III) porphyrins as ionophores for fluoride selective polymeric membrane electrodes. Electroanalysis, 18(6), 551-557.
  • [43] Ghaedi, M., Montazerozohori, M., Mortazavi, K., Behfar, M., Marahel. F. 2011a. Iodide–Selective Electrodes Based on Two New Carriers: Influence of Various Nanoparticle Materials on the Response Performance of proposed electrodes. International Journal of Electrochemical Science, 6, 6682-6698.
  • [44] Mortazavi, K., Ghaedi, M., Montazerozohori, M., Andikaey, Z. 2011. Iodide–selective Electrodes Based on Bis(Trans-Cinnamaldehyde)1,3-Propanediimine Mercury (II) Chloride [BCPHgCl2] and Bis(Trans-Cinnamaldehyde)-1,3-Propandiimine Cadmium(II) Chloride [BCPCdCl2] Carriers: Influence of Multiwalled Carbon Nanotubes on the Response Performance. International Journal of Electrochemical Science, 6, 4250-4263.
There are 44 citations in total.

Details

Journal Section Articles
Authors

Ayça Demirel Özel

Semra Muratoğlu This is me

H. Elif Kormalı Ertürün This is me

Publication Date April 16, 2018
Published in Issue Year 2018 Volume: 22 Issue: 1

Cite

APA Demirel Özel, A., Muratoğlu, S., & Kormalı Ertürün, H. E. (2018). Paladyum Komplekslerine Dayalı İyodür-Seçici Karbon Pasta Elektrot Hazırlanması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(1), 237-246. https://doi.org/10.19113/sdufbed.82321
AMA Demirel Özel A, Muratoğlu S, Kormalı Ertürün HE. Paladyum Komplekslerine Dayalı İyodür-Seçici Karbon Pasta Elektrot Hazırlanması. J. Nat. Appl. Sci. April 2018;22(1):237-246. doi:10.19113/sdufbed.82321
Chicago Demirel Özel, Ayça, Semra Muratoğlu, and H. Elif Kormalı Ertürün. “Paladyum Komplekslerine Dayalı İyodür-Seçici Karbon Pasta Elektrot Hazırlanması”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, no. 1 (April 2018): 237-46. https://doi.org/10.19113/sdufbed.82321.
EndNote Demirel Özel A, Muratoğlu S, Kormalı Ertürün HE (April 1, 2018) Paladyum Komplekslerine Dayalı İyodür-Seçici Karbon Pasta Elektrot Hazırlanması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 1 237–246.
IEEE A. Demirel Özel, S. Muratoğlu, and H. E. Kormalı Ertürün, “Paladyum Komplekslerine Dayalı İyodür-Seçici Karbon Pasta Elektrot Hazırlanması”, J. Nat. Appl. Sci., vol. 22, no. 1, pp. 237–246, 2018, doi: 10.19113/sdufbed.82321.
ISNAD Demirel Özel, Ayça et al. “Paladyum Komplekslerine Dayalı İyodür-Seçici Karbon Pasta Elektrot Hazırlanması”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/1 (April 2018), 237-246. https://doi.org/10.19113/sdufbed.82321.
JAMA Demirel Özel A, Muratoğlu S, Kormalı Ertürün HE. Paladyum Komplekslerine Dayalı İyodür-Seçici Karbon Pasta Elektrot Hazırlanması. J. Nat. Appl. Sci. 2018;22:237–246.
MLA Demirel Özel, Ayça et al. “Paladyum Komplekslerine Dayalı İyodür-Seçici Karbon Pasta Elektrot Hazırlanması”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 22, no. 1, 2018, pp. 237-46, doi:10.19113/sdufbed.82321.
Vancouver Demirel Özel A, Muratoğlu S, Kormalı Ertürün HE. Paladyum Komplekslerine Dayalı İyodür-Seçici Karbon Pasta Elektrot Hazırlanması. J. Nat. Appl. Sci. 2018;22(1):237-46.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.