BibTex RIS Cite

Hydrothermal Synthesis of Cuprous Oxide Nanoflowers and Characterization of Their Optical Properties

Year 2018, Volume: 22 Issue: 2, 397 - 401, 15.08.2018
https://doi.org/10.19113/sdufbed.58150

Abstract

In this study, the facile, one-step synthesis of cuprous oxide nanostructures via hydrothermal reaction is reported. Nanoflower-like cuprous oxides with average sizes of ~230 nm are synthesized by using copper (Cu) acetate monohydrate as the Cu source, glucose as the reducing agent and polyvinylpyrrolidone (PVP) as the surfactant in basic aqueous solutions at 140oC for 6 h. The effects of the NaOH content on the morphology of synthesized structures are also investigated, where hexapods were synthesized when no NaOH used and submicron sized octahedra were obtained with increased NaOH amount. The optical properties of the synthesized structures are studied by using photoluminescence (PL) and UV-Vis spectroscopy. PL spectra revealed the presence of different band edge emissions located at similar wavelengths for all the three samples, where the intensity of the emissions varied from sample to sample. An absorbance peak located at ~355 nm and a direct bandgap value of about Eg = 2.16 eV are measured via UV-Vis spectroscopy of the nanoflower-like cuprous oxides. 

References

  • [1] Kuo, C.H., Huang, M.H. 2010. Morphologically controlled synthesis of Cu2O nanocrystals and their properties. Nano Today, 5 (2010), 106-116.
  • [2] Sun, S., Yang, Z. 2014. Recent advances in tuning crystal facets of polyhedral cuprous oxide architectures. RSC Advances, 4 (2014), 3804-3822.
  • [3] Zhang, L. Wang, H. 2011. Cuprous oxide Nanoshells with Geometrically Tunable Optical Properties. ACS Nano, 5 (2011), 3257-3267.
  • [4] Karapetyan, A., Reymers, A., Giorgio, S., Fauquet, C., Sajti, L., Nitsche, S., Nersesyan, M., Gevorgyan, V., Marine, W. 2015. Cuprous oxide thin films prepared by thermal oxidation of copper layer. Morphological and optical properties. Journal of Luminescence, 159 (2015), 325-332.
  • [5] Wei, H.M., Gong, H.B., Chen, L., Zi, M., Cao, B.Q. 2012. Photovoltaic Efficiency Enhancement of Cu2O Solar Cells Achieved by Controlling Homojunction Orientation and Surface Microstructure, Journal of Physical Chemistry, 116 (2012), 10510-10515.
  • [6] Li, S., Ge, X., Jiang, S., Peng, X., Zhang, Z., Li, W., Yu, S. 2015. Synthesis of octahedral and cubic Cu2O microcrystals in sub- and super-critical methanol and their photocatalytic performance. Journal of Materials Science, 50 (2015), 4115-4121.
  • [7] Li, R., Yan, X., Yu, L., Zhang, Z., Tang, Q., Pan, Y. 2013. The morphology dependence of cuprous oxide and its photocatalytic properties. CrystEngComm, 15 (2013), 10049-10058.
  • [8] Han, K., Tao, M. 2009. Electrochemically deposited p-n homojunction cuprous oxide solar cells. Solar Energy Materials & Solar Cells, 93 (2009), 153-157.
  • [9] Zhang, H., Zhu, Q,. Zhang, Y., Wang, Y., Zhao, L., Yu, B. 2007. One-Pot Synthesis and Hierarchical Assembly of Hollow Cu2O Microspheres with Nanocrystals-Composed Multishell and Their Gas-Sensing Properties. Advanced Functional Materials, 17 (2007), 2766-2771.
  • [10] Zhang, J., Liu, J., Peng, Q., Wang, X., Li, Y. 2006. Nearly Monodisperse Cu2O and CuO Nanospheres: Preparation and Applications for Sensitive Gas Sensors. Chemistry of Materials, 18 (2006), 867-871.
  • [11] Pang, H., Gao, F., Lu, Q. 2009. Morphology effect on antibacterial activity of cuprous oxide. Chemical Communications, (2009), 1076-1078.
  • [12] Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., Tarascon, J.M. 2000. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 407 (2000), 496-499.
  • [13] Gou, L., Murphy, C.J. 2004. Controlling the size of Cu2O nanocubes from 200 to 25 nm. Journal of Materials Chemistry, 14 (2004), 735-738.
  • [14] Ko, E., Choi, J., Okamoto, K., Tak, Y., Lee, J. 2006. Cu2O Nanowires in an Alumina Template: Electrochemical Conditions for the Synthesis and Photoluminescence Characteristics. Chemical Physics Physical Chemistry, 7 (2006), 1505-1509.
  • [15] Nguyen, M.A., Bedford, N.M., Ren, Y., Zahran, E.M., Goodin, R.C., Chagani, F.F., Bachas, L.G., Knecht, M.R. 2015. Direct Synthetic Control over the Size, Composition, and Photocatalytic Activity of Octahedral Copper Oxide Materials: Correlation Between Surface Structure and Catalytic Functionality. ACS Applied Materials Interfaces, 7 (2015), 13238-13250.
  • [16] Ghosh, S., Das, R., Naskar, M.K. 2016. Morphological evolution of hexapod Cu2O microcrystals by a rapid template-free autoclaving technique. Materials Letters, 183 (2016), 325-328.
  • [17] Zhang, L., Yuan, F., Zhang, X., Yang, L. 2011. Facile synthesis of flower like copper oxide and their application to hydrogen peroxide and nitrite sensing. Chemistry Central Journal, 5 (2011), 75.
  • [18] Einarsrud, M.A., Grande, T. 2014. 1D oxide nanostructures from chemical solutions. Chemical Society Reviews, 43 (2014), 2187-2199.
  • [19] Zhang, X., Xie, Y., Xu, F., Xu, D., Liu, H. 2004. Growth and morphological evolution of hexapod-shaped cuprous oxide microcrystals at room temperature, Canadian Journal of Chemistry, 82 (2004), 1341-1345.
  • [20] Das, K., De, S.K. 2009. Optical and photoconductivity studies of Cu2O nanowires synthesized by solvothermal method. Journal of Luminescence, 129 (2009), 1015-1022.
  • [21] Wei, H., Gong, H., Wang, Y., Hu, X., Chen, L., Xu, H., Liu, P., Cao, B. 2011. Three kinds of Cu2O/ZnO heterostructure solar cells fabricated with electrochemical deposition and their structure-related photovoltaic properties. Cryst. Eng. Comm., 13 (2011), 6065-6070.
  • [22] No, Y.S., Oh, D.H., Kim, S.Y., Yoo, K.H., Kim, T.W. 2012. Structural, optical, and electrical properties of Cu2O nanocubes grown on indium-tin-oxide-coated glass substrates by using seed-layer-free electrochemical deposition method. Applied Surface Science, 258 (2012), 7581-7583.
  • [23] Tauc, J., Grigorovici, R., Vancu, A. 1966. Optical Properties and Electronic Structure of Amorphous Germanium. Physica Status Solidi, 15 (1966), 628-637.
Year 2018, Volume: 22 Issue: 2, 397 - 401, 15.08.2018
https://doi.org/10.19113/sdufbed.58150

Abstract

References

  • [1] Kuo, C.H., Huang, M.H. 2010. Morphologically controlled synthesis of Cu2O nanocrystals and their properties. Nano Today, 5 (2010), 106-116.
  • [2] Sun, S., Yang, Z. 2014. Recent advances in tuning crystal facets of polyhedral cuprous oxide architectures. RSC Advances, 4 (2014), 3804-3822.
  • [3] Zhang, L. Wang, H. 2011. Cuprous oxide Nanoshells with Geometrically Tunable Optical Properties. ACS Nano, 5 (2011), 3257-3267.
  • [4] Karapetyan, A., Reymers, A., Giorgio, S., Fauquet, C., Sajti, L., Nitsche, S., Nersesyan, M., Gevorgyan, V., Marine, W. 2015. Cuprous oxide thin films prepared by thermal oxidation of copper layer. Morphological and optical properties. Journal of Luminescence, 159 (2015), 325-332.
  • [5] Wei, H.M., Gong, H.B., Chen, L., Zi, M., Cao, B.Q. 2012. Photovoltaic Efficiency Enhancement of Cu2O Solar Cells Achieved by Controlling Homojunction Orientation and Surface Microstructure, Journal of Physical Chemistry, 116 (2012), 10510-10515.
  • [6] Li, S., Ge, X., Jiang, S., Peng, X., Zhang, Z., Li, W., Yu, S. 2015. Synthesis of octahedral and cubic Cu2O microcrystals in sub- and super-critical methanol and their photocatalytic performance. Journal of Materials Science, 50 (2015), 4115-4121.
  • [7] Li, R., Yan, X., Yu, L., Zhang, Z., Tang, Q., Pan, Y. 2013. The morphology dependence of cuprous oxide and its photocatalytic properties. CrystEngComm, 15 (2013), 10049-10058.
  • [8] Han, K., Tao, M. 2009. Electrochemically deposited p-n homojunction cuprous oxide solar cells. Solar Energy Materials & Solar Cells, 93 (2009), 153-157.
  • [9] Zhang, H., Zhu, Q,. Zhang, Y., Wang, Y., Zhao, L., Yu, B. 2007. One-Pot Synthesis and Hierarchical Assembly of Hollow Cu2O Microspheres with Nanocrystals-Composed Multishell and Their Gas-Sensing Properties. Advanced Functional Materials, 17 (2007), 2766-2771.
  • [10] Zhang, J., Liu, J., Peng, Q., Wang, X., Li, Y. 2006. Nearly Monodisperse Cu2O and CuO Nanospheres: Preparation and Applications for Sensitive Gas Sensors. Chemistry of Materials, 18 (2006), 867-871.
  • [11] Pang, H., Gao, F., Lu, Q. 2009. Morphology effect on antibacterial activity of cuprous oxide. Chemical Communications, (2009), 1076-1078.
  • [12] Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., Tarascon, J.M. 2000. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 407 (2000), 496-499.
  • [13] Gou, L., Murphy, C.J. 2004. Controlling the size of Cu2O nanocubes from 200 to 25 nm. Journal of Materials Chemistry, 14 (2004), 735-738.
  • [14] Ko, E., Choi, J., Okamoto, K., Tak, Y., Lee, J. 2006. Cu2O Nanowires in an Alumina Template: Electrochemical Conditions for the Synthesis and Photoluminescence Characteristics. Chemical Physics Physical Chemistry, 7 (2006), 1505-1509.
  • [15] Nguyen, M.A., Bedford, N.M., Ren, Y., Zahran, E.M., Goodin, R.C., Chagani, F.F., Bachas, L.G., Knecht, M.R. 2015. Direct Synthetic Control over the Size, Composition, and Photocatalytic Activity of Octahedral Copper Oxide Materials: Correlation Between Surface Structure and Catalytic Functionality. ACS Applied Materials Interfaces, 7 (2015), 13238-13250.
  • [16] Ghosh, S., Das, R., Naskar, M.K. 2016. Morphological evolution of hexapod Cu2O microcrystals by a rapid template-free autoclaving technique. Materials Letters, 183 (2016), 325-328.
  • [17] Zhang, L., Yuan, F., Zhang, X., Yang, L. 2011. Facile synthesis of flower like copper oxide and their application to hydrogen peroxide and nitrite sensing. Chemistry Central Journal, 5 (2011), 75.
  • [18] Einarsrud, M.A., Grande, T. 2014. 1D oxide nanostructures from chemical solutions. Chemical Society Reviews, 43 (2014), 2187-2199.
  • [19] Zhang, X., Xie, Y., Xu, F., Xu, D., Liu, H. 2004. Growth and morphological evolution of hexapod-shaped cuprous oxide microcrystals at room temperature, Canadian Journal of Chemistry, 82 (2004), 1341-1345.
  • [20] Das, K., De, S.K. 2009. Optical and photoconductivity studies of Cu2O nanowires synthesized by solvothermal method. Journal of Luminescence, 129 (2009), 1015-1022.
  • [21] Wei, H., Gong, H., Wang, Y., Hu, X., Chen, L., Xu, H., Liu, P., Cao, B. 2011. Three kinds of Cu2O/ZnO heterostructure solar cells fabricated with electrochemical deposition and their structure-related photovoltaic properties. Cryst. Eng. Comm., 13 (2011), 6065-6070.
  • [22] No, Y.S., Oh, D.H., Kim, S.Y., Yoo, K.H., Kim, T.W. 2012. Structural, optical, and electrical properties of Cu2O nanocubes grown on indium-tin-oxide-coated glass substrates by using seed-layer-free electrochemical deposition method. Applied Surface Science, 258 (2012), 7581-7583.
  • [23] Tauc, J., Grigorovici, R., Vancu, A. 1966. Optical Properties and Electronic Structure of Amorphous Germanium. Physica Status Solidi, 15 (1966), 628-637.
There are 23 citations in total.

Details

Journal Section Articles
Authors

Aziz Genç This is me

Publication Date August 15, 2018
Published in Issue Year 2018 Volume: 22 Issue: 2

Cite

APA Genç, A. (2018). Hydrothermal Synthesis of Cuprous Oxide Nanoflowers and Characterization of Their Optical Properties. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 397-401. https://doi.org/10.19113/sdufbed.58150
AMA Genç A. Hydrothermal Synthesis of Cuprous Oxide Nanoflowers and Characterization of Their Optical Properties. J. Nat. Appl. Sci. August 2018;22(2):397-401. doi:10.19113/sdufbed.58150
Chicago Genç, Aziz. “Hydrothermal Synthesis of Cuprous Oxide Nanoflowers and Characterization of Their Optical Properties”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, no. 2 (August 2018): 397-401. https://doi.org/10.19113/sdufbed.58150.
EndNote Genç A (August 1, 2018) Hydrothermal Synthesis of Cuprous Oxide Nanoflowers and Characterization of Their Optical Properties. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 2 397–401.
IEEE A. Genç, “Hydrothermal Synthesis of Cuprous Oxide Nanoflowers and Characterization of Their Optical Properties”, J. Nat. Appl. Sci., vol. 22, no. 2, pp. 397–401, 2018, doi: 10.19113/sdufbed.58150.
ISNAD Genç, Aziz. “Hydrothermal Synthesis of Cuprous Oxide Nanoflowers and Characterization of Their Optical Properties”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/2 (August 2018), 397-401. https://doi.org/10.19113/sdufbed.58150.
JAMA Genç A. Hydrothermal Synthesis of Cuprous Oxide Nanoflowers and Characterization of Their Optical Properties. J. Nat. Appl. Sci. 2018;22:397–401.
MLA Genç, Aziz. “Hydrothermal Synthesis of Cuprous Oxide Nanoflowers and Characterization of Their Optical Properties”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 22, no. 2, 2018, pp. 397-01, doi:10.19113/sdufbed.58150.
Vancouver Genç A. Hydrothermal Synthesis of Cuprous Oxide Nanoflowers and Characterization of Their Optical Properties. J. Nat. Appl. Sci. 2018;22(2):397-401.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.