BibTex RIS Cite

Steered Molecular Dynamics Simulations of Coumarin2 5Z/5E Pulling Reveal Different Interaction Profiles for Four Human Cytosolic Carbonic Anhydrases

Year 2018, Volume: 22 Issue: 2, 406 - 415, 15.08.2018

Abstract

Carbonic anhydrase (CA) is an important enzyme, which has multiple isoforms each performing different functions in humans. Characterizing the interactions of carbonic anhydrase isoforms with ligands is a difficult but important task. In recent years, steered molecular dynamics (SMD) has been used successfully to characterize ligand binding and unbinding events. In this study, constant velocity SMD simulations were performed on four cytosolic human carbonic anhydrases (carbonic anhydrase I, II, III and VII) using a ligand called Coumarin2 5Z/5E to understand better the nature of interactions between this ligand and the various enzyme isoforms. The influence of force constant and pulling velocity on SMD simulations were investigated. When the force constant and the pulling velocity were changed, no significant effect on interaction profiles was observed. Finally, hydrogen bond interactions, Histidine 64 positions and the differences between force-distance profiles for all isozymes were analyzed. These results demonstrate that human cytosolic carbonic anhydrases I, III, and VII show similar Coumarin2 5Z/5E unbinding patterns with different rupture forces, while carbonic anhydrase II has a distinct interaction profile.

References

  • [1] Supuran, C. T. 2008. Carbonic anhydrases--an overview. Current Pharmaceutical Design, 14(7), 603-14.
  • [2] Supuran, C. T. 2008. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nature Reviews Drug Discovery, 7(2), 168-81.
  • [3] Supuran, C. T. 2010. Carbonic anhydrase inhibitors. Bioorganic & Medicinal Chemistry Letters, 20(12), 3467-74.
  • [4] Carta, F., Supuran, C. T., Scozzafava, A. 2014. Sulfonamides and their isosters as carbonic anhydrase inhibitors. Future Medicinal Chemistry, 6(10), 1149-65.
  • [5] Maresca, A., Temperini, C., Vu, H., Pham, N. B., Poulsen, S. A., et al. 2009. Non-zinc mediated inhibition of carbonic anhydrases: coumarins are a new class of suicide inhibitors. Journal of American Chemical Society, 131(8), 3057-62.
  • [6] Maren, T. H. 1987. Carbonic-Anhydrase - General Perspectives and Advances in Glaucoma Research. Drug Development Research, 10(4), 255-76.
  • [7] Thiry, A., Dogne, J., Supuran, C. T., Masereel, B. 2007. Carbonic anhydrase inhibitors as anticonvulsant agents. Current Topics in Medicinal Chemistry, 7(9), 855-64.
  • [8] Roberts, E., Eargle, J., Wright, D., Luthey-Schulten, Z. 2006. MultiSeq: unifying sequence and structure data for evolutionary analysis. BMC Bioinformatics, 7, 382.
  • [9] Humphrey, W., Dalke, A., Schulten, K. 1996. VMD: visual molecular dynamics. Journal of Molecular Graphics and Modelling, 14(1), 33-8, 27-8.
  • [10] UniProt, Consortium. 2015. UniProt: a hub for protein information. Nucleic Acids Research, 43(Database issue), 204-12.
  • [11] Lu, D., Voth, G. A. 1998. Molecular dynamics simulations of human carbonic anhydrase II: insight into experimental results and the role of solvation. Proteins, 33(1), 119-34.
  • [12] Toba, S., Colombo, G., Merz, K. M. 1999. Solvent dynamics and mechanism of proton transfer in human carbonic anhydrase II. Journal of American Chemical Society, 121(10), 2290-302.
  • [13] Ohta, S., Alam, M. T., Arakawa, H., Ikai, A. 2004. Origin of mechanical strength of bovine carbonic anhydrase studied by molecular dynamics simulation. Biophysical Journal, 87(6), 4007-20.
  • [14] Fisher, S. Z., Maupin, C. M., Budayova-Spano, M., Govindasamy, L., Tu, C., et al. 2007. Atomic crystal and molecular dynamics simulation structures of human carbonic anhydrase II: insights into the proton transfer mechanism. Biochemistry, 46(11), 2930-7.
  • [15] Maupin, C. M., Voth, G. A. 2007. Preferred orientations of His64 in human carbonic anhydrase II. Biochemistry, 46(11), 2938-47.
  • [16] Grubmuller, H., Heymann, B., Tavan, P. 1996. Ligand binding: Molecular mechanics calculation of the streptavidin biotin rupture force. Science, 271(5251), 997-9.
  • [17] Izrailev, S., Stepaniants, S., Balsera, M., Oono, Y., Schulten, K. 1997. Molecular dynamics study of unbinding of the avidin-biotin complex. Biophysical Journal, 72(4), 1568-81.
  • [18] Xu, Y. C., Shen, J. H., Luo, X. M., Shen, X., Chen, K. X., et al. 2004. Steered molecular dynamics simulations of protein-ligand interactions. Science in China Series B, 47(5), 355-66.
  • [19] Kosztin, D., Izrailev, S., Schulten, K. 1999. Unbinding of retinoic acid from its receptor studied by steered molecular dynamics. Biophysical Journal, 76(1), 188-97.
  • [20] Shen, L., Shen, J., Luo, X., Cheng, F., Xu, Y., et al. 2003. Steered molecular dynamics simulation on the binding of NNRTI to HIV-1 RT. Biophysical Journal, 84(6), 3547-63.
  • [21] Martinez, L., Webb, P., Polikarpov, I., Skaf, M. S. 2006. Molecular dynamics simulations of ligand dissociation from thyroid hormone receptors: Evidence of the likeliest escape pathway and its implications for the design of novel ligands. Journal of Medicinal Chemistry, 49(1), 23-6.
  • [22] Mai, B. K., Li, M. S. 2011. Neuraminidase inhibitor R-125489-A promising drug for treating influenza virus: Steered molecular dynamics approach. Biochemical and Biophysical Research Communications, 410(3), 688-91.
  • [23] Kumar, V., Kannan, K. K. 1994. Enzyme-substrate interactions. Structure of human carbonic anhydrase I complexed with bicarbonate. Journal of Molecular Biology, 241(2), 226-32.
  • [24] Duda, D. M., Tu, C., Fisher, S. Z., An, H., Yoshioka, C., et al. 2005. Human carbonic anhydrase III: structural and kinetic study of catalysis and proton transfer. Biochemistry, 44(30), 10046-53.
  • [25] Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., et al. 2005. Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781-802.
  • [26] MacKerell, A. D., Brooks, C. L., Nilsson, L., Roux, B., Won, Y., et al. 1998. CHARMM: The Energy Function and Its Parameterization with an Overview of the Program. Encyclopedia of Computational Chemistry. John Wiley & Sons, Chichester, 271-277.
  • [27] MacKerell, A. D., Jr., Banavali, N., Foloppe, N. 2000. Development and current status of the CHARMM force field for nucleic acids. Biopolymers, 56(4), 257-65.
  • [28] Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., et al. 2010. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671-90.
  • [29] Mayne, C. G., Saam, J., Schulten, K., Tajkhorshid, E., Gumbart, J. C. 2013. Rapid parameterization of small molecules using the Force Field Toolkit. Journal of Computational Chemistry, 34(32), 2757-70.
  • [30] Frisch, Michael J., Trucks, G. W., Schlegel, H. Bernhard, Scuseria, Gustavo E., Robb, Michael A., et al. 2009. Gaussian, 09.
  • [31] Loncharich, R. J., Brooks, B. R., Pastor, R. W. 1992. Langevin dynamics of peptides: the frictional dependence of isomerization rates of N-acetylalanyl-N'-methylamide. Biopolymers, 32(5), 523-35.
  • [32] Darden, T., York, D., Pedersen, L. 1993. Particle Mesh Ewald - an N.Log(N) Method for Ewald Sums in Large Systems. Journal of Chemical Physics, 98(12), 10089-92.
  • [33] Laskowski, R. A., Swindells, M. B. 2011. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. Journal Chemical Information and Modelling, 51(10), 2778-86.
  • [34] Park, S., Khalili-Araghi, F., Tajkhorshid, E., Schulten, K. 2003. Free energy calculation from steered molecular dynamics simulations using Jarzynski's equality. Journal of Chemical Physics, 119(6), 3559-66.
  • [35] Park, S., Schulten, K. 2004. Calculating potentials of mean force from steered molecular dynamics simulations. Journal of Chemical Physics, 120(13), 5946-61.
  • [36] Heymann, B., Grubmuller, H. 1999. AN02/DNP-hapten unbinding forces studied by molecular dynamics atomic force microscopy simulations. Chemical Physics Letters, 303(1-2), 1-9.
Year 2018, Volume: 22 Issue: 2, 406 - 415, 15.08.2018

Abstract

References

  • [1] Supuran, C. T. 2008. Carbonic anhydrases--an overview. Current Pharmaceutical Design, 14(7), 603-14.
  • [2] Supuran, C. T. 2008. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nature Reviews Drug Discovery, 7(2), 168-81.
  • [3] Supuran, C. T. 2010. Carbonic anhydrase inhibitors. Bioorganic & Medicinal Chemistry Letters, 20(12), 3467-74.
  • [4] Carta, F., Supuran, C. T., Scozzafava, A. 2014. Sulfonamides and their isosters as carbonic anhydrase inhibitors. Future Medicinal Chemistry, 6(10), 1149-65.
  • [5] Maresca, A., Temperini, C., Vu, H., Pham, N. B., Poulsen, S. A., et al. 2009. Non-zinc mediated inhibition of carbonic anhydrases: coumarins are a new class of suicide inhibitors. Journal of American Chemical Society, 131(8), 3057-62.
  • [6] Maren, T. H. 1987. Carbonic-Anhydrase - General Perspectives and Advances in Glaucoma Research. Drug Development Research, 10(4), 255-76.
  • [7] Thiry, A., Dogne, J., Supuran, C. T., Masereel, B. 2007. Carbonic anhydrase inhibitors as anticonvulsant agents. Current Topics in Medicinal Chemistry, 7(9), 855-64.
  • [8] Roberts, E., Eargle, J., Wright, D., Luthey-Schulten, Z. 2006. MultiSeq: unifying sequence and structure data for evolutionary analysis. BMC Bioinformatics, 7, 382.
  • [9] Humphrey, W., Dalke, A., Schulten, K. 1996. VMD: visual molecular dynamics. Journal of Molecular Graphics and Modelling, 14(1), 33-8, 27-8.
  • [10] UniProt, Consortium. 2015. UniProt: a hub for protein information. Nucleic Acids Research, 43(Database issue), 204-12.
  • [11] Lu, D., Voth, G. A. 1998. Molecular dynamics simulations of human carbonic anhydrase II: insight into experimental results and the role of solvation. Proteins, 33(1), 119-34.
  • [12] Toba, S., Colombo, G., Merz, K. M. 1999. Solvent dynamics and mechanism of proton transfer in human carbonic anhydrase II. Journal of American Chemical Society, 121(10), 2290-302.
  • [13] Ohta, S., Alam, M. T., Arakawa, H., Ikai, A. 2004. Origin of mechanical strength of bovine carbonic anhydrase studied by molecular dynamics simulation. Biophysical Journal, 87(6), 4007-20.
  • [14] Fisher, S. Z., Maupin, C. M., Budayova-Spano, M., Govindasamy, L., Tu, C., et al. 2007. Atomic crystal and molecular dynamics simulation structures of human carbonic anhydrase II: insights into the proton transfer mechanism. Biochemistry, 46(11), 2930-7.
  • [15] Maupin, C. M., Voth, G. A. 2007. Preferred orientations of His64 in human carbonic anhydrase II. Biochemistry, 46(11), 2938-47.
  • [16] Grubmuller, H., Heymann, B., Tavan, P. 1996. Ligand binding: Molecular mechanics calculation of the streptavidin biotin rupture force. Science, 271(5251), 997-9.
  • [17] Izrailev, S., Stepaniants, S., Balsera, M., Oono, Y., Schulten, K. 1997. Molecular dynamics study of unbinding of the avidin-biotin complex. Biophysical Journal, 72(4), 1568-81.
  • [18] Xu, Y. C., Shen, J. H., Luo, X. M., Shen, X., Chen, K. X., et al. 2004. Steered molecular dynamics simulations of protein-ligand interactions. Science in China Series B, 47(5), 355-66.
  • [19] Kosztin, D., Izrailev, S., Schulten, K. 1999. Unbinding of retinoic acid from its receptor studied by steered molecular dynamics. Biophysical Journal, 76(1), 188-97.
  • [20] Shen, L., Shen, J., Luo, X., Cheng, F., Xu, Y., et al. 2003. Steered molecular dynamics simulation on the binding of NNRTI to HIV-1 RT. Biophysical Journal, 84(6), 3547-63.
  • [21] Martinez, L., Webb, P., Polikarpov, I., Skaf, M. S. 2006. Molecular dynamics simulations of ligand dissociation from thyroid hormone receptors: Evidence of the likeliest escape pathway and its implications for the design of novel ligands. Journal of Medicinal Chemistry, 49(1), 23-6.
  • [22] Mai, B. K., Li, M. S. 2011. Neuraminidase inhibitor R-125489-A promising drug for treating influenza virus: Steered molecular dynamics approach. Biochemical and Biophysical Research Communications, 410(3), 688-91.
  • [23] Kumar, V., Kannan, K. K. 1994. Enzyme-substrate interactions. Structure of human carbonic anhydrase I complexed with bicarbonate. Journal of Molecular Biology, 241(2), 226-32.
  • [24] Duda, D. M., Tu, C., Fisher, S. Z., An, H., Yoshioka, C., et al. 2005. Human carbonic anhydrase III: structural and kinetic study of catalysis and proton transfer. Biochemistry, 44(30), 10046-53.
  • [25] Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., et al. 2005. Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781-802.
  • [26] MacKerell, A. D., Brooks, C. L., Nilsson, L., Roux, B., Won, Y., et al. 1998. CHARMM: The Energy Function and Its Parameterization with an Overview of the Program. Encyclopedia of Computational Chemistry. John Wiley & Sons, Chichester, 271-277.
  • [27] MacKerell, A. D., Jr., Banavali, N., Foloppe, N. 2000. Development and current status of the CHARMM force field for nucleic acids. Biopolymers, 56(4), 257-65.
  • [28] Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., et al. 2010. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671-90.
  • [29] Mayne, C. G., Saam, J., Schulten, K., Tajkhorshid, E., Gumbart, J. C. 2013. Rapid parameterization of small molecules using the Force Field Toolkit. Journal of Computational Chemistry, 34(32), 2757-70.
  • [30] Frisch, Michael J., Trucks, G. W., Schlegel, H. Bernhard, Scuseria, Gustavo E., Robb, Michael A., et al. 2009. Gaussian, 09.
  • [31] Loncharich, R. J., Brooks, B. R., Pastor, R. W. 1992. Langevin dynamics of peptides: the frictional dependence of isomerization rates of N-acetylalanyl-N'-methylamide. Biopolymers, 32(5), 523-35.
  • [32] Darden, T., York, D., Pedersen, L. 1993. Particle Mesh Ewald - an N.Log(N) Method for Ewald Sums in Large Systems. Journal of Chemical Physics, 98(12), 10089-92.
  • [33] Laskowski, R. A., Swindells, M. B. 2011. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. Journal Chemical Information and Modelling, 51(10), 2778-86.
  • [34] Park, S., Khalili-Araghi, F., Tajkhorshid, E., Schulten, K. 2003. Free energy calculation from steered molecular dynamics simulations using Jarzynski's equality. Journal of Chemical Physics, 119(6), 3559-66.
  • [35] Park, S., Schulten, K. 2004. Calculating potentials of mean force from steered molecular dynamics simulations. Journal of Chemical Physics, 120(13), 5946-61.
  • [36] Heymann, B., Grubmuller, H. 1999. AN02/DNP-hapten unbinding forces studied by molecular dynamics atomic force microscopy simulations. Chemical Physics Letters, 303(1-2), 1-9.
There are 36 citations in total.

Details

Journal Section Articles
Authors

Mustafa Tekpınar

Publication Date August 15, 2018
Published in Issue Year 2018 Volume: 22 Issue: 2

Cite

APA Tekpınar, M. (2018). Steered Molecular Dynamics Simulations of Coumarin2 5Z/5E Pulling Reveal Different Interaction Profiles for Four Human Cytosolic Carbonic Anhydrases. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 406-415. https://doi.org/10.19113/sdufbed.47662
AMA Tekpınar M. Steered Molecular Dynamics Simulations of Coumarin2 5Z/5E Pulling Reveal Different Interaction Profiles for Four Human Cytosolic Carbonic Anhydrases. J. Nat. Appl. Sci. August 2018;22(2):406-415. doi:10.19113/sdufbed.47662
Chicago Tekpınar, Mustafa. “Steered Molecular Dynamics Simulations of Coumarin2 5Z/5E Pulling Reveal Different Interaction Profiles for Four Human Cytosolic Carbonic Anhydrases”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, no. 2 (August 2018): 406-15. https://doi.org/10.19113/sdufbed.47662.
EndNote Tekpınar M (August 1, 2018) Steered Molecular Dynamics Simulations of Coumarin2 5Z/5E Pulling Reveal Different Interaction Profiles for Four Human Cytosolic Carbonic Anhydrases. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 2 406–415.
IEEE M. Tekpınar, “Steered Molecular Dynamics Simulations of Coumarin2 5Z/5E Pulling Reveal Different Interaction Profiles for Four Human Cytosolic Carbonic Anhydrases”, J. Nat. Appl. Sci., vol. 22, no. 2, pp. 406–415, 2018, doi: 10.19113/sdufbed.47662.
ISNAD Tekpınar, Mustafa. “Steered Molecular Dynamics Simulations of Coumarin2 5Z/5E Pulling Reveal Different Interaction Profiles for Four Human Cytosolic Carbonic Anhydrases”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/2 (August 2018), 406-415. https://doi.org/10.19113/sdufbed.47662.
JAMA Tekpınar M. Steered Molecular Dynamics Simulations of Coumarin2 5Z/5E Pulling Reveal Different Interaction Profiles for Four Human Cytosolic Carbonic Anhydrases. J. Nat. Appl. Sci. 2018;22:406–415.
MLA Tekpınar, Mustafa. “Steered Molecular Dynamics Simulations of Coumarin2 5Z/5E Pulling Reveal Different Interaction Profiles for Four Human Cytosolic Carbonic Anhydrases”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 22, no. 2, 2018, pp. 406-15, doi:10.19113/sdufbed.47662.
Vancouver Tekpınar M. Steered Molecular Dynamics Simulations of Coumarin2 5Z/5E Pulling Reveal Different Interaction Profiles for Four Human Cytosolic Carbonic Anhydrases. J. Nat. Appl. Sci. 2018;22(2):406-15.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.