The current study investigated heat transfers at high temperatures and compressive strength after exposure to high temperatures of gas concrete, clay brick, rice husk bricks used as wall materials, and gypsum plaster and common plaster used as coating materials. Tests measuring apparent porosity, water absorption, bulk density and compressive strength were performed on the samples prepared in 100 mm x 100 mm x 100 mm size. In the high-temperature experiment, the samples with K-type NiCr-Ni thermocouple were placed in a specially designed laboratory furnace. The internal temperature of the furnace was set at 800 oC. The researchers found that out of the samples exposed to high temperatures compressive strength and thermal conductivity of the gypsum plaster mortar were better than those of the common plaster mortar. Furthermore, the gas concrete, a wall material, was found to have a low thermal conductivity. As a result, the gas concrete and common plaster mortar, which were exposed to high temperature, were found to be more durable than other materials and, therefore, more advantageous when used in construction.
Journal Section | Articles |
---|---|
Authors | |
Publication Date | August 15, 2018 |
Published in Issue | Year 2018 Volume: 22 Issue: 2 |
e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688
All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.