BibTex RIS Cite

The Investigation of Heat Performance and Thermal Conductivity of Different Wall Materials at High Temperatures

Year 2018, Volume: 22 Issue: 2, 536 - 544, 15.08.2018

Abstract

The current study investigated heat transfers at high temperatures and compressive strength after exposure to high temperatures of gas concrete, clay brick, rice husk bricks used as wall materials, and gypsum plaster and common plaster used as coating materials. Tests measuring apparent porosity, water absorption, bulk density and compressive strength were performed on the samples prepared in 100 mm x 100 mm x 100 mm size. In the high-temperature experiment, the samples with K-type NiCr-Ni thermocouple were placed in a specially designed laboratory furnace. The internal temperature of the furnace was set at 800 oC. The researchers found that out of the samples exposed to high temperatures compressive strength and thermal conductivity of the gypsum plaster mortar were better than those of the common plaster mortar. Furthermore, the gas concrete, a wall material, was found to have a low thermal conductivity. As a result, the gas concrete and common plaster mortar, which were exposed to high temperature, were found to be more durable than other materials and, therefore, more advantageous when used in construction.

References

  • [1] Nguyen, T., Meftah, F., Chammas, R., Mebarki, A. 2009. The behaviour of masonry walls subjected to fire: Modelling and parametrical studies in the case of hollow burnt-clay bricks. Fire Safety Journal 44 (2009), 629-641.
  • [2] Gündüz, L., Şapcı, N., Bekar, M. 2006. Farklı mermer türlerinin yüksek sıcaklık etkileşimlerindeki davranışları. 5. Mermer ve Doğaltaş Sempozyumu, 471-479.
  • [3] Vilches, L. F., Leiva, C., Vale, J., Fernandez-Pereira, C. 2005. Insulating capacity of fly ash pastes used for passive protection against fire. Cement & Concrete Composites, 27 (2005), 776-781.
  • [4] Nguyen, T., Mefrah, F. 2012. Behavior og clay hollow-brick masony walls during fire. Part 1: Experimental analysis. Fire Safety Journal, 52 (2012), 55-64.
  • [5] Leiva, C., Vilches, L. F., Vale, J., Fernendez-Pereira, C. 2009. Fire resistance of biomass ash panels used for internal partitions in buildings. Fire Safety Journal, 44(2009),622-628.
  • [6] Gilani, M. S., Wakili, G. K., Koebel, M., Hugi, E., Carl, S., Lehmann E. 2013. Visualizing moisture release and migration in gypsum plaster board during and beyond dehydration by neutron radiography. Internatiolan Jourlan of Heat and Mass Transfer, 60 (2013), 284-290.
  • [7] Kızılkanat, A. B., Yüzer, N. 2008. Yüksek sıcaklık etkisindeki harcın basınç dayanımı-renk değişimi ilişkisi. İMO Teknik Dergi, 22 (6) (2008), 4381-4392.
  • [8] EN 1363-1. 2012.Fire resistance tests – Part 1: General requirements Europan Standards.
  • [9] ISO 834-1. 1999.Fire-resistance tests elements of building construction Part 1: General requirements International Organization for Standardization.
  • [10] EN 1364-1. 2010. Fire resistance tests for non-loadbearing elements: Part 1—Walls Europan Standards.
  • [11] EN 1365-1. 2000. Fire resistance tests for loadbearing elements—Partie 1: Murs Europan Standards.
  • [12] ASTM E119. 2010. Standard test methods for fire tests of building construction and materials American Society for Testing and Materials.
  • [13] EN 1996-1-2. 2006. Eurocode 6—Design of masonry structures. Parts 1–2: General rules—Structural Fire Design Europan Standards.
  • [14] ACI 216.1. 2007. Code requirements for determining fire resistance of concrete and masonry construction assemblies American Concrete Institute.
  • [15] Lawrence, S. 2006. Design of clay masonry walls for fire resistance Think Brick, Australia.
  • [16] Kalifa, P., Menneteau, F. D., Quenard, D. 2000. Spalling and pore pressure in hpc at high temperatures. Cement and Concrete Research, 30(2000), 1915-1927.
  • [17] Çil, İ., Çakır, Ö. A., Ramyar, K., Bilgin, A., Karaduman, N. Farklı tip çimentoların yüksek sıcaklıklara direnci TÜBİTAK 2007; Proje No: MAG 106M158.
  • [18] Wang, H. Y. 2008. The effects of elevated temperature on cement paste containing GGBFS. Cement and Concrete Composites,30 (2008), 992-999.
  • [19] Tsai, K. 2009. Influence of substrate on fire performance of wall lining materials. Construction and Building Materials, 23(2009), 3258-3263.
  • [20] Chan, S. Y. N., Luo, X. and Sun, W.2000. Effect of high temperature and cooling regimes on the compressive strength and pore properties of high performance concrete. Construction and Building Materials, 14(2000), 261-266.
  • [21] Shoaib, M, M., Ahmed, S. A., Balaha, M. M. 2001. Effect of fire and cooling mode on the properties of slag mortars. Cement and Concrete Research, 31(2001), 1533-1538.
  • [22] Arı, K., Erdinç, M. and Haktanır, T., 2004. Kalsiyum Alüminatlı Çimentonun Refrakter Olarak Kullanılması. Beton 2004 Kongresi İstanbul.
  • [23] Xiao, J., Falkner, H. 2006. On residual strength of high-performance concrete with and without polypropylene fibres at elevated temperatures. Fire Safety Journal, 41(2006), 115–121.
  • [24] Aydın, S., Yazıcı, H. and Baradan, B. 2008. High temperature resistance of normal strength and autoclaved high strength mortars incorporated polypropylene and steel fibers. Construction and Building Materials, 22 (2008), 504–512.
  • [25] Chan, Y. N., Lou, X. and Sun, W. 2000. Compressive Strength and Pore Structure of High-Performance Concrete after Exposure to High Temperature up to 800 ºC. Cement and Concrete Research, 30(2000), 247-251.
  • [26] Lau, A. and Anson, M. 2006. Effect of high temperatures on high performance steel fibre reinforced concrete. Cement and Concrete Research, 36 (2006), 1698–1707.
  • [27] Poon, C. S., Shui, Z. H. and Lam, L., 2004. Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures. Cement and Concrete Research, 34(2004), 2215–2222.
  • [28] Sancak, E., Sarı, Y. D. and Şimsek, O. 2008. Effects of elevated temperature on compressive strength and weight loss of the light-weight concrete with silica fume and superplasticizer. Cem. Concr. Comp., 30(2008), 715–721.
  • [29] Bingöl, A. F. and Gül, R. 2004. Compressive strength of lightweight aggregate concrete exposed to high temperatures. Indian J. Eng. Mater. Sci., 11(2004), 68–72.
  • [30] Li, M., Qian, C. X. and Sun, W. 2004. Mechanical properties of high strength concrete after fire. Cem. Concr. Res., 34(2004), 1001–1005.
  • [31] Noumowe, A. N., Siddique, R. and Debicki, G. 2009. Permeability of high-performance concrete subjected to elevated temperature (600 °C). Const. Build. Mater., 23(2009), 1855–1861.
  • [32] Yüzer, N., Aköz, F. and Dokuzer, L. Ö. 2004. Compressive strength-color change relation in mortars at high temperature. Cem. Concr. Res., 34(2004), 1803–1807.
  • [33] Arıöz, Ö. 2007. Effects of elevated temperatures on properties of concrete. Fire Safety Journa, 42 (2007), 516-522.
  • [34] TS EN 771-4. 2011. Specification for masonry units - Part 4: Autoclaved aerated concrete masonry units, TSE, Ankara - TURKEY.
  • [35] TS EN 13279-1. 2009. Gypsum binders and gypsum plasters - Part 1: Definitions and requirements, TSE, Ankara - TURKEY.
  • [36] TS EN 13279-2. 2007. Gypsum binders and gypsum plasters - Part 2: Test methods, TSE, Ankara - TURKEY.
  • [37] TS 4022. 1993. Hydrated lime-for use in buildings, TSE, Ankara - TURKEY.
  • [38] TS EN 197-1. 2012. Cement – Part 1: Composition, specification and conformity criteria for common cements, TSE, Ankara - TURKEY.
  • [39] TS EN 772-4. 2000. Methods of test for masonry units - Part 4: Determination of real and bulk density and of total and open porosity for natural stone masonry units, TSE, Ankara - TURKEY.
  • [40] EN 12504-4. 2004. Testing concrete - Part 4: Determination of ultrasonic pulse velocity, Europan Standards.
  • [41] ASTM C 1113. 2004. Standard test method for thermal conductivity of refractories by hot wire, American Society for Testing and Materials.
  • [42] Subaşı, S., İşbilir, B., Ercan, İ. 2011. Uçucu kül ikameli çimento numunelerinin mekanik özelliklerine yüksek sıcaklığın etkisi. Politeknik Dergisi, 14(2011), 141-148.
  • [43] Eriç, M. 2010. Yapı fiziği ve malzemesi. Literatür yayıncılık.
  • [44] Özel, C., İren, B., 2016. Investigation of Usage of Waste Autoclaved Aerated Concrete in Polymer Concrete. SDU Journal of Technical Sciences, 6(2016), 28-38.
  • [45] Hurama, H., Topçu, İ. B., Karakurt, C., 2009. Properties of the Autoclaved Aerated Concrete Produced from Coal Bottom Ash. Journal of Materials Processing Technology, 209 (2009), 767-773.
  • [46] Karakurt, C., Kurama, H., Topçu, İ. B. 2010. Utilization of Natural Zeolite in Aerated Concrete Production. Cement & Concrete Composites, 32 (2010), 1-8.
  • [47] Tanaçan, L., Ersoy, H. Y., Arpacıoğlu, Ü. 2005. Effect of High Temperature on the Mechanical Properties and Ultrasound Velocity of Cellular Gas Concrete. 10DBMC International Conférence On Durability of Building Materials and Components, Lyon – France, 17-20 April 2005.
  • [48] Durmuş, G., Arslan, M. 2009. Yüksek Sıcaklığın Boşluk Yapısına Etkileri (The effects of high temperature on the cavity structure of concrete). 5. Uluslararası İleri Teknolojiler Sempozyumu (IATS’09), 13-15 May 2009, Karabük, Turkey.
  • [49] Avdelidis, N, P., Moropoulou, A. 2004. Applications of infrared thermography for the investigation of historic structures. Journal of Cultural Heritage, 5(2004), 119-27.
  • [50] Bergman, L. T., Lavine, S. A., Incropera, F. P., Dewitt, D. P. 2011. Fundamentals of heat and mass transfer. Seventh Edition John Waley & Sons. Inc. .
  • [51] Pehlivanlı, Z. 2009. Gazbeton malzemesinin ısıl iletkenliğinin nem ve sıcaklıkla değişiminin incelenmesi. Int. J. Eng. Research & Development, 1(2009), 76-80.
  • [52] TS 825. 2008. Thermal insulation requirements for buildings, TSE, Ankara - TURKEY.
Year 2018, Volume: 22 Issue: 2, 536 - 544, 15.08.2018

Abstract

References

  • [1] Nguyen, T., Meftah, F., Chammas, R., Mebarki, A. 2009. The behaviour of masonry walls subjected to fire: Modelling and parametrical studies in the case of hollow burnt-clay bricks. Fire Safety Journal 44 (2009), 629-641.
  • [2] Gündüz, L., Şapcı, N., Bekar, M. 2006. Farklı mermer türlerinin yüksek sıcaklık etkileşimlerindeki davranışları. 5. Mermer ve Doğaltaş Sempozyumu, 471-479.
  • [3] Vilches, L. F., Leiva, C., Vale, J., Fernandez-Pereira, C. 2005. Insulating capacity of fly ash pastes used for passive protection against fire. Cement & Concrete Composites, 27 (2005), 776-781.
  • [4] Nguyen, T., Mefrah, F. 2012. Behavior og clay hollow-brick masony walls during fire. Part 1: Experimental analysis. Fire Safety Journal, 52 (2012), 55-64.
  • [5] Leiva, C., Vilches, L. F., Vale, J., Fernendez-Pereira, C. 2009. Fire resistance of biomass ash panels used for internal partitions in buildings. Fire Safety Journal, 44(2009),622-628.
  • [6] Gilani, M. S., Wakili, G. K., Koebel, M., Hugi, E., Carl, S., Lehmann E. 2013. Visualizing moisture release and migration in gypsum plaster board during and beyond dehydration by neutron radiography. Internatiolan Jourlan of Heat and Mass Transfer, 60 (2013), 284-290.
  • [7] Kızılkanat, A. B., Yüzer, N. 2008. Yüksek sıcaklık etkisindeki harcın basınç dayanımı-renk değişimi ilişkisi. İMO Teknik Dergi, 22 (6) (2008), 4381-4392.
  • [8] EN 1363-1. 2012.Fire resistance tests – Part 1: General requirements Europan Standards.
  • [9] ISO 834-1. 1999.Fire-resistance tests elements of building construction Part 1: General requirements International Organization for Standardization.
  • [10] EN 1364-1. 2010. Fire resistance tests for non-loadbearing elements: Part 1—Walls Europan Standards.
  • [11] EN 1365-1. 2000. Fire resistance tests for loadbearing elements—Partie 1: Murs Europan Standards.
  • [12] ASTM E119. 2010. Standard test methods for fire tests of building construction and materials American Society for Testing and Materials.
  • [13] EN 1996-1-2. 2006. Eurocode 6—Design of masonry structures. Parts 1–2: General rules—Structural Fire Design Europan Standards.
  • [14] ACI 216.1. 2007. Code requirements for determining fire resistance of concrete and masonry construction assemblies American Concrete Institute.
  • [15] Lawrence, S. 2006. Design of clay masonry walls for fire resistance Think Brick, Australia.
  • [16] Kalifa, P., Menneteau, F. D., Quenard, D. 2000. Spalling and pore pressure in hpc at high temperatures. Cement and Concrete Research, 30(2000), 1915-1927.
  • [17] Çil, İ., Çakır, Ö. A., Ramyar, K., Bilgin, A., Karaduman, N. Farklı tip çimentoların yüksek sıcaklıklara direnci TÜBİTAK 2007; Proje No: MAG 106M158.
  • [18] Wang, H. Y. 2008. The effects of elevated temperature on cement paste containing GGBFS. Cement and Concrete Composites,30 (2008), 992-999.
  • [19] Tsai, K. 2009. Influence of substrate on fire performance of wall lining materials. Construction and Building Materials, 23(2009), 3258-3263.
  • [20] Chan, S. Y. N., Luo, X. and Sun, W.2000. Effect of high temperature and cooling regimes on the compressive strength and pore properties of high performance concrete. Construction and Building Materials, 14(2000), 261-266.
  • [21] Shoaib, M, M., Ahmed, S. A., Balaha, M. M. 2001. Effect of fire and cooling mode on the properties of slag mortars. Cement and Concrete Research, 31(2001), 1533-1538.
  • [22] Arı, K., Erdinç, M. and Haktanır, T., 2004. Kalsiyum Alüminatlı Çimentonun Refrakter Olarak Kullanılması. Beton 2004 Kongresi İstanbul.
  • [23] Xiao, J., Falkner, H. 2006. On residual strength of high-performance concrete with and without polypropylene fibres at elevated temperatures. Fire Safety Journal, 41(2006), 115–121.
  • [24] Aydın, S., Yazıcı, H. and Baradan, B. 2008. High temperature resistance of normal strength and autoclaved high strength mortars incorporated polypropylene and steel fibers. Construction and Building Materials, 22 (2008), 504–512.
  • [25] Chan, Y. N., Lou, X. and Sun, W. 2000. Compressive Strength and Pore Structure of High-Performance Concrete after Exposure to High Temperature up to 800 ºC. Cement and Concrete Research, 30(2000), 247-251.
  • [26] Lau, A. and Anson, M. 2006. Effect of high temperatures on high performance steel fibre reinforced concrete. Cement and Concrete Research, 36 (2006), 1698–1707.
  • [27] Poon, C. S., Shui, Z. H. and Lam, L., 2004. Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures. Cement and Concrete Research, 34(2004), 2215–2222.
  • [28] Sancak, E., Sarı, Y. D. and Şimsek, O. 2008. Effects of elevated temperature on compressive strength and weight loss of the light-weight concrete with silica fume and superplasticizer. Cem. Concr. Comp., 30(2008), 715–721.
  • [29] Bingöl, A. F. and Gül, R. 2004. Compressive strength of lightweight aggregate concrete exposed to high temperatures. Indian J. Eng. Mater. Sci., 11(2004), 68–72.
  • [30] Li, M., Qian, C. X. and Sun, W. 2004. Mechanical properties of high strength concrete after fire. Cem. Concr. Res., 34(2004), 1001–1005.
  • [31] Noumowe, A. N., Siddique, R. and Debicki, G. 2009. Permeability of high-performance concrete subjected to elevated temperature (600 °C). Const. Build. Mater., 23(2009), 1855–1861.
  • [32] Yüzer, N., Aköz, F. and Dokuzer, L. Ö. 2004. Compressive strength-color change relation in mortars at high temperature. Cem. Concr. Res., 34(2004), 1803–1807.
  • [33] Arıöz, Ö. 2007. Effects of elevated temperatures on properties of concrete. Fire Safety Journa, 42 (2007), 516-522.
  • [34] TS EN 771-4. 2011. Specification for masonry units - Part 4: Autoclaved aerated concrete masonry units, TSE, Ankara - TURKEY.
  • [35] TS EN 13279-1. 2009. Gypsum binders and gypsum plasters - Part 1: Definitions and requirements, TSE, Ankara - TURKEY.
  • [36] TS EN 13279-2. 2007. Gypsum binders and gypsum plasters - Part 2: Test methods, TSE, Ankara - TURKEY.
  • [37] TS 4022. 1993. Hydrated lime-for use in buildings, TSE, Ankara - TURKEY.
  • [38] TS EN 197-1. 2012. Cement – Part 1: Composition, specification and conformity criteria for common cements, TSE, Ankara - TURKEY.
  • [39] TS EN 772-4. 2000. Methods of test for masonry units - Part 4: Determination of real and bulk density and of total and open porosity for natural stone masonry units, TSE, Ankara - TURKEY.
  • [40] EN 12504-4. 2004. Testing concrete - Part 4: Determination of ultrasonic pulse velocity, Europan Standards.
  • [41] ASTM C 1113. 2004. Standard test method for thermal conductivity of refractories by hot wire, American Society for Testing and Materials.
  • [42] Subaşı, S., İşbilir, B., Ercan, İ. 2011. Uçucu kül ikameli çimento numunelerinin mekanik özelliklerine yüksek sıcaklığın etkisi. Politeknik Dergisi, 14(2011), 141-148.
  • [43] Eriç, M. 2010. Yapı fiziği ve malzemesi. Literatür yayıncılık.
  • [44] Özel, C., İren, B., 2016. Investigation of Usage of Waste Autoclaved Aerated Concrete in Polymer Concrete. SDU Journal of Technical Sciences, 6(2016), 28-38.
  • [45] Hurama, H., Topçu, İ. B., Karakurt, C., 2009. Properties of the Autoclaved Aerated Concrete Produced from Coal Bottom Ash. Journal of Materials Processing Technology, 209 (2009), 767-773.
  • [46] Karakurt, C., Kurama, H., Topçu, İ. B. 2010. Utilization of Natural Zeolite in Aerated Concrete Production. Cement & Concrete Composites, 32 (2010), 1-8.
  • [47] Tanaçan, L., Ersoy, H. Y., Arpacıoğlu, Ü. 2005. Effect of High Temperature on the Mechanical Properties and Ultrasound Velocity of Cellular Gas Concrete. 10DBMC International Conférence On Durability of Building Materials and Components, Lyon – France, 17-20 April 2005.
  • [48] Durmuş, G., Arslan, M. 2009. Yüksek Sıcaklığın Boşluk Yapısına Etkileri (The effects of high temperature on the cavity structure of concrete). 5. Uluslararası İleri Teknolojiler Sempozyumu (IATS’09), 13-15 May 2009, Karabük, Turkey.
  • [49] Avdelidis, N, P., Moropoulou, A. 2004. Applications of infrared thermography for the investigation of historic structures. Journal of Cultural Heritage, 5(2004), 119-27.
  • [50] Bergman, L. T., Lavine, S. A., Incropera, F. P., Dewitt, D. P. 2011. Fundamentals of heat and mass transfer. Seventh Edition John Waley & Sons. Inc. .
  • [51] Pehlivanlı, Z. 2009. Gazbeton malzemesinin ısıl iletkenliğinin nem ve sıcaklıkla değişiminin incelenmesi. Int. J. Eng. Research & Development, 1(2009), 76-80.
  • [52] TS 825. 2008. Thermal insulation requirements for buildings, TSE, Ankara - TURKEY.
There are 52 citations in total.

Details

Journal Section Articles
Authors

Gökhan Görhan

Gökhan Kürklü

Publication Date August 15, 2018
Published in Issue Year 2018 Volume: 22 Issue: 2

Cite

APA Görhan, G., & Kürklü, G. (2018). The Investigation of Heat Performance and Thermal Conductivity of Different Wall Materials at High Temperatures. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 536-544.
AMA Görhan G, Kürklü G. The Investigation of Heat Performance and Thermal Conductivity of Different Wall Materials at High Temperatures. J. Nat. Appl. Sci. August 2018;22(2):536-544.
Chicago Görhan, Gökhan, and Gökhan Kürklü. “The Investigation of Heat Performance and Thermal Conductivity of Different Wall Materials at High Temperatures”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, no. 2 (August 2018): 536-44.
EndNote Görhan G, Kürklü G (August 1, 2018) The Investigation of Heat Performance and Thermal Conductivity of Different Wall Materials at High Temperatures. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 2 536–544.
IEEE G. Görhan and G. Kürklü, “The Investigation of Heat Performance and Thermal Conductivity of Different Wall Materials at High Temperatures”, J. Nat. Appl. Sci., vol. 22, no. 2, pp. 536–544, 2018.
ISNAD Görhan, Gökhan - Kürklü, Gökhan. “The Investigation of Heat Performance and Thermal Conductivity of Different Wall Materials at High Temperatures”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/2 (August 2018), 536-544.
JAMA Görhan G, Kürklü G. The Investigation of Heat Performance and Thermal Conductivity of Different Wall Materials at High Temperatures. J. Nat. Appl. Sci. 2018;22:536–544.
MLA Görhan, Gökhan and Gökhan Kürklü. “The Investigation of Heat Performance and Thermal Conductivity of Different Wall Materials at High Temperatures”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 22, no. 2, 2018, pp. 536-44.
Vancouver Görhan G, Kürklü G. The Investigation of Heat Performance and Thermal Conductivity of Different Wall Materials at High Temperatures. J. Nat. Appl. Sci. 2018;22(2):536-44.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.