BibTex RIS Cite

Enhancement Physical Performance of Nanostructured CuO Films via Surfactant TX-100

Year 2018, Volume: 22 Issue: 2, 545 - 551, 15.08.2018

Abstract

In this study, we informed a systematic approach to obtain CuO films with and without TX-100 surfactant by the SILAR procedure. Morphological, structural and optical features of the CuO films were researched by metallurgical microscope, scanning electron microscopy, X-ray diffraction analysis and ultraviolet–visible spectrophotometry respectively with respect to concentrations of TX-100 agent. Metallurgical and scanning electron microscope photographs displayed that the morphology of the film surface was impressed by surfactant TX-100. X-ray diffraction patterns verified that all CuO films have monoclinic crystal lattice structure with preferential orientations of ( 11) and (111) planes. Ultraviolet–visible spectra demonstrated that the optical bandgap and transmittance values of the films were altered with TX-100 content.

References

  • [1] Iqbal, T., Aziz, A., Khan, M.A., Andleeb, S., Mahmood, H., Khan, A. A., Khan, R., Shafique M. 2018. Surfactant assisted synthesis of ZnO nanostructures using atmospheric pressure microplasma electrochemical process with antibacterial applications. Materials Science & Engineering B, 228 (2018), 153–159.
  • [2] Balmuri, S. R., Selvaraj, U., Kumar, V. V., Anthony, S. P., Tsatsakis, A. M., Golokhvast, K. S., Raman T. 2017. Effect of surfactant in mitigating cadmium oxide nanoparticle toxicity: Implications for mitigating cadmium toxicity in environment. Environmental Research, 152 (2017), 141–149.
  • [3] Hu, J., Li, H., Muhammad, S., Wu, Q., Zhao, Y., Jiao Q. 2017. Surfactant-assisted hydrothermal synthesis of TiO2/reduced graphene oxide nanocomposites and their photocatalytic performances. Journal of Solid State Chemistry, 253 (2017), 113–120.
  • [4] Zhang, Q., Zhang, K., Xu, D., Yang, G., Huang, H., Nie, F., Liu, C., Yang, S. 2014. CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Progress in Materials Science, 60 (2014), 208–337.
  • [5] Yathisha, R. O., Nayaka, Y. A. 2018. Structural, optical and electrical properties of zinc incorporated copper oxide nanoparticles: doping effect of Zn. J Mater Sci, 53(2018), 678–691.
  • [6] Gopalakrishnan, N., Balakrishnan, L., Arunkumar, B., Gowrishankar S. 2014. Optimization of CuO Ultra Thin Film for Gas Sensor Application by RF Magnetron Sputtering. J. Nanoelectron. Optoelectron., 9:4 (2014), 1-6.
  • [7] Sharma, J. K., Akhtar, M. S., Ameen, S., Srivastava, P., Singh, G. 2015. Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. Journal of Alloys and Compounds, 632 (2015), 321–325.
  • [8] Huang, J., Fu, G., Shi, C., Wang, X., Zhai, M. 2014. Novel porous CuO microrods: synthesis, characterization, and their photocatalysis property. Journal of Physics and Chemistry of Solids, 75 (2014), 1011–1016.
  • [9] Hameed, M. U., Khan, Y., Ali, S., Wu, Z., Dar, S. U., Song, H., Ahmad, A., Chen, Y. 2017. Tween-80 guided CuO nanostructures: Morphology-dependent performance for lithium ion batteries. Ceramics International, 43 (2017), 741–748.
  • [10] Sahin, B., Alomari, M., Kaya,T., Hydration Detection through use of artificial sweat in doped- and partially-doped nanostructured CuO films. Ceramics International 41 (2015) 8002–8007 .
  • [11] Wu, J., Hui, K. S., Hui, K. N., Li, L., Chun, H. H., Cho, Y. R. 2016. Characterization of Sn-doped CuO thin films prepared by a sol–gel method. J Mater Sci: Mater Electron, 27(2016), 1719–1724.
  • [12] Wang, Y., Jiang, T., Meng, D., Wang, D., Yu, M. 2015. Synthesis and enhanced photocatalytic property of feather-like Cd-doped CuO nanostructures by hydrothermal method. Applied Surface Science, 355 (2015), 191–196.
  • [13] Jan, T., Iqbal, J., Farooq, U., Gul, A., Abbasi, R., Ahmad, I., Malik, M. 2015. Structural, Raman and optical characteristics of Sn doped CuO nanostructures: A novel anticancer agent. Ceramics International, 41 (2015), 13074–13079.
  • [14] Lai, M., Mubeen, S., Chartuprayoon, N., Mulchandani, A., Deshusses, M. A., Myung, N. V. 2010. Synthesis of Sn doped CuO nanotubes from core–shell Cu/SnO2 nanowires by the Kirkendall effect. Nanotechnology, 21 (2010), 295601, 1-5.
  • [15] Wanjala, K. S., Njoroge, W. K., Makori, N. E., Ngaruiya, J. M. 2016. Optical and Electrical Characterization of CuO Thin Films as Absorber Material for Solar Cell Applications. American Journal of Condensed Matter Physics, 6(1) 2016, 1-6.
  • [16] Mitzi, D. B. 2009. Solution processing of inorganic materials. 1st Edition. John Wiley & Sons, Inc., Publication, 501p.
  • [17] Shei, S. C., Lee, P. Y., Chang, S. J. 2012. Effect of temperature on the deposition of ZnO thin films by successive ionic layer adsorption and reaction. Applied Surface Science, 258 (2012), 8109– 8116.
  • [18] Sahin, B., Physical Properties of Nanostructured CdO Films from Alkaline Baths Containing Saccharin as Additive, The Scientific World Journal (2013) 1-5.
  • [19] Singh, I., Kaur, G., Bedi, R. K. 2011. CTAB assisted growth and characterization of nanocrystalline CuO films by ultrasonic spray pyrolysis technique. Applied Surface Science, 257 (2011), 9546– 9554.
  • [20] Siddiqui, H., Qureshi, M. S., Haque, F. Z. 2016. Surfactant assisted wet chemical synthesis of copper oxide (CuO) nanostructures and their spectroscopic analysis. Optik, 127 (2016), 2740–2747.
  • [21] Hosseini, S. R., Ghasemi, S., Ghasemi, S. A. 2016. Effect of surfactants on electrocatalytic performance of copper nanoparticles for hydrogen evolution reaction. Journal of Molecular Liquids, 222 (2016), 1068–1075.
  • [22] Muiva, C. M., Juma, A. O., Lepodise, L. M., Maabong, K., Letsholathebe, D. 2017. Surfactant assisted chemical bath deposition based synthesis of 1-D nanostructured CuO thin films from alkaline baths. Materials Science in Semiconductor Processing, 67 (2017), 69–74.
  • [23] Khalili, E., Tabrizi, S. A. H. 2017. ZnO–CdO nanocomposite: microemulsion synthesis and dye removal ability. J Sol-Gel Sci Technol, 81(2017), 475–482.
  • [24] Andronic, l. 2013. Investigation of the effect of surfactant on dip-coating TiO2 photocatalyst. Bulletin of the Transilvania University of Braşov Series I: Engineering Sciences, 6:55 No.1(2013), 39-44.
  • [25] Selvakumar, D., Dharmaraj, N., Kadirvelu, K., Kumar, N. S., Padaki, V. C. 2014. Effect of sintering temperature on structural and optical properties of indium(III) oxide nanoparticles prepared with Triton X-100 by hydrothermal method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 133 (2014), 335–339.
  • [26] Sanguanruang, S., Leotphayakkarat, R., Fangern, N., Koonsaeng, N., Chawengkijwanich, C. 2011. Preparation and Characterization of Thin Films TiO2 Prepared by Various Amount of Triton X-100 Surfactant for Photodegradation of a Dye Pollutant. Advanced Materials Research Vols. 233-235 (2011), 2863-2870.
  • [27] Hajra, P., Shyamal, S., Bera, A., Mandal, H., Sariket, D., Kundu, M., Pande, S., Bhattacharya, C. 2015. Optimization of Triton-X 100 surfactant in the development of Bismuth Oxide thin film semiconductor for improved photoelectrochemical water oxidation behavior. Electrochimica Acta, 185 (2015), 229–235.
  • [28] Aydin, R., Şahin, B. 2017. The role of Triton X-100 as a surfactant on the CdO nanostructures grown by the SILAR method. Journal of Alloys and Compounds, 705 (2017), 9-13.
  • [29] Novikova, A. A., Moiseeva, D. Y., Karyukov, E. V., Kalinichenko, A. A. 2016. Facile prepation photocatalytically active CuO plate-like nanoparticles from brochantite. Materials Letters, 167 (2016), 165-169.
  • [30] Zhang, Q., Zhang, K., Xu, D., Yang, G., Huang, H., Nie, F., Liu, C., Yang, S. 2014. CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties and applications. Progress in Materials Science, 60 (2014), 208-337.
  • [31] Saien, J., Asadabadi, S. 2011. Synergistic adsorption Triton X-100 and CTAB surfactants at the toluene + water interface. Fluid Phase Equilibria, 307(2011), 16-23
  • [32] Barry, F. J., Cunnane V. J. 2002. Synergistic effects of organic additives on the discharge, nucleation and growth mechanisms of tin at polycrystalline copper electrodes. Journal of Electroanalytical Chemistry, 537 (2002), 151-163.
  • [33] Gürbüz, E., Aydin, R., Şahin, B. 2018. A study of influences of transition metal (Mn, Ni) co-doping on the morphological, structural and optical properties of nanostructured CdO films. J Mater Sci: Mater Electron, 29(2018), 1823-1831.
  • [34] Ganesan K. P., Anadhan, N., Dharuman, V. , Sami, P., Pannerselvam, R., Marimuthu, T. 2017. Electrochemically modified crystal orientation, surface morphology and optical properties using CTAB on Cu2O thin films. Results in Physics, 7(2017), 82-86.
  • [35] Afzal, M., Naik, P. S., Nadaf, L. I., Shaikh, I. N. 2016. SnO2-Surfactant Composite Films for Superior Gas Sensitivity. SSRG International Journal of Applied Physics (SSRG-IJAP), 3:5 (2016), 1-5.
  • [36] Farahmandjou, M. 2010. Effect of LABS and Triton X-100 surfactants on the particle size of nanocrystalline ITO powder. Optoelectronics And Advanced Materials – Rapid Communications, 4:7(2010), 986-988
  • [37] Suwanchawalit, C., Buddee, S., Wongnawa, S. 2017. Triton X-100 induced cuboid-like BiVO4 microsphere with high photocatalytic performance. Journal Of Environmental Sciences, 55 (2017) 257 – 265
  • [38] Gupta, R. K., Serbetci, Z., Yakuphanoglu, F. 2012. Bandgap variation in size controlled nanostructured Li–Ni co-doped CdO thin films. Journal of Alloys and Compounds, 515 (2012), 96–100.
  • [39] Marotti, R.E., Giorgi, P., Machado, G., Dalchiele, E.A. 2006. Crystallite size dependence of band gap energy for electrodeposited ZnO grown at different temperatures, Solar Energy Materials & Solar Cells, 90 (2006), 2356–2361.
Year 2018, Volume: 22 Issue: 2, 545 - 551, 15.08.2018

Abstract

References

  • [1] Iqbal, T., Aziz, A., Khan, M.A., Andleeb, S., Mahmood, H., Khan, A. A., Khan, R., Shafique M. 2018. Surfactant assisted synthesis of ZnO nanostructures using atmospheric pressure microplasma electrochemical process with antibacterial applications. Materials Science & Engineering B, 228 (2018), 153–159.
  • [2] Balmuri, S. R., Selvaraj, U., Kumar, V. V., Anthony, S. P., Tsatsakis, A. M., Golokhvast, K. S., Raman T. 2017. Effect of surfactant in mitigating cadmium oxide nanoparticle toxicity: Implications for mitigating cadmium toxicity in environment. Environmental Research, 152 (2017), 141–149.
  • [3] Hu, J., Li, H., Muhammad, S., Wu, Q., Zhao, Y., Jiao Q. 2017. Surfactant-assisted hydrothermal synthesis of TiO2/reduced graphene oxide nanocomposites and their photocatalytic performances. Journal of Solid State Chemistry, 253 (2017), 113–120.
  • [4] Zhang, Q., Zhang, K., Xu, D., Yang, G., Huang, H., Nie, F., Liu, C., Yang, S. 2014. CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Progress in Materials Science, 60 (2014), 208–337.
  • [5] Yathisha, R. O., Nayaka, Y. A. 2018. Structural, optical and electrical properties of zinc incorporated copper oxide nanoparticles: doping effect of Zn. J Mater Sci, 53(2018), 678–691.
  • [6] Gopalakrishnan, N., Balakrishnan, L., Arunkumar, B., Gowrishankar S. 2014. Optimization of CuO Ultra Thin Film for Gas Sensor Application by RF Magnetron Sputtering. J. Nanoelectron. Optoelectron., 9:4 (2014), 1-6.
  • [7] Sharma, J. K., Akhtar, M. S., Ameen, S., Srivastava, P., Singh, G. 2015. Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. Journal of Alloys and Compounds, 632 (2015), 321–325.
  • [8] Huang, J., Fu, G., Shi, C., Wang, X., Zhai, M. 2014. Novel porous CuO microrods: synthesis, characterization, and their photocatalysis property. Journal of Physics and Chemistry of Solids, 75 (2014), 1011–1016.
  • [9] Hameed, M. U., Khan, Y., Ali, S., Wu, Z., Dar, S. U., Song, H., Ahmad, A., Chen, Y. 2017. Tween-80 guided CuO nanostructures: Morphology-dependent performance for lithium ion batteries. Ceramics International, 43 (2017), 741–748.
  • [10] Sahin, B., Alomari, M., Kaya,T., Hydration Detection through use of artificial sweat in doped- and partially-doped nanostructured CuO films. Ceramics International 41 (2015) 8002–8007 .
  • [11] Wu, J., Hui, K. S., Hui, K. N., Li, L., Chun, H. H., Cho, Y. R. 2016. Characterization of Sn-doped CuO thin films prepared by a sol–gel method. J Mater Sci: Mater Electron, 27(2016), 1719–1724.
  • [12] Wang, Y., Jiang, T., Meng, D., Wang, D., Yu, M. 2015. Synthesis and enhanced photocatalytic property of feather-like Cd-doped CuO nanostructures by hydrothermal method. Applied Surface Science, 355 (2015), 191–196.
  • [13] Jan, T., Iqbal, J., Farooq, U., Gul, A., Abbasi, R., Ahmad, I., Malik, M. 2015. Structural, Raman and optical characteristics of Sn doped CuO nanostructures: A novel anticancer agent. Ceramics International, 41 (2015), 13074–13079.
  • [14] Lai, M., Mubeen, S., Chartuprayoon, N., Mulchandani, A., Deshusses, M. A., Myung, N. V. 2010. Synthesis of Sn doped CuO nanotubes from core–shell Cu/SnO2 nanowires by the Kirkendall effect. Nanotechnology, 21 (2010), 295601, 1-5.
  • [15] Wanjala, K. S., Njoroge, W. K., Makori, N. E., Ngaruiya, J. M. 2016. Optical and Electrical Characterization of CuO Thin Films as Absorber Material for Solar Cell Applications. American Journal of Condensed Matter Physics, 6(1) 2016, 1-6.
  • [16] Mitzi, D. B. 2009. Solution processing of inorganic materials. 1st Edition. John Wiley & Sons, Inc., Publication, 501p.
  • [17] Shei, S. C., Lee, P. Y., Chang, S. J. 2012. Effect of temperature on the deposition of ZnO thin films by successive ionic layer adsorption and reaction. Applied Surface Science, 258 (2012), 8109– 8116.
  • [18] Sahin, B., Physical Properties of Nanostructured CdO Films from Alkaline Baths Containing Saccharin as Additive, The Scientific World Journal (2013) 1-5.
  • [19] Singh, I., Kaur, G., Bedi, R. K. 2011. CTAB assisted growth and characterization of nanocrystalline CuO films by ultrasonic spray pyrolysis technique. Applied Surface Science, 257 (2011), 9546– 9554.
  • [20] Siddiqui, H., Qureshi, M. S., Haque, F. Z. 2016. Surfactant assisted wet chemical synthesis of copper oxide (CuO) nanostructures and their spectroscopic analysis. Optik, 127 (2016), 2740–2747.
  • [21] Hosseini, S. R., Ghasemi, S., Ghasemi, S. A. 2016. Effect of surfactants on electrocatalytic performance of copper nanoparticles for hydrogen evolution reaction. Journal of Molecular Liquids, 222 (2016), 1068–1075.
  • [22] Muiva, C. M., Juma, A. O., Lepodise, L. M., Maabong, K., Letsholathebe, D. 2017. Surfactant assisted chemical bath deposition based synthesis of 1-D nanostructured CuO thin films from alkaline baths. Materials Science in Semiconductor Processing, 67 (2017), 69–74.
  • [23] Khalili, E., Tabrizi, S. A. H. 2017. ZnO–CdO nanocomposite: microemulsion synthesis and dye removal ability. J Sol-Gel Sci Technol, 81(2017), 475–482.
  • [24] Andronic, l. 2013. Investigation of the effect of surfactant on dip-coating TiO2 photocatalyst. Bulletin of the Transilvania University of Braşov Series I: Engineering Sciences, 6:55 No.1(2013), 39-44.
  • [25] Selvakumar, D., Dharmaraj, N., Kadirvelu, K., Kumar, N. S., Padaki, V. C. 2014. Effect of sintering temperature on structural and optical properties of indium(III) oxide nanoparticles prepared with Triton X-100 by hydrothermal method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 133 (2014), 335–339.
  • [26] Sanguanruang, S., Leotphayakkarat, R., Fangern, N., Koonsaeng, N., Chawengkijwanich, C. 2011. Preparation and Characterization of Thin Films TiO2 Prepared by Various Amount of Triton X-100 Surfactant for Photodegradation of a Dye Pollutant. Advanced Materials Research Vols. 233-235 (2011), 2863-2870.
  • [27] Hajra, P., Shyamal, S., Bera, A., Mandal, H., Sariket, D., Kundu, M., Pande, S., Bhattacharya, C. 2015. Optimization of Triton-X 100 surfactant in the development of Bismuth Oxide thin film semiconductor for improved photoelectrochemical water oxidation behavior. Electrochimica Acta, 185 (2015), 229–235.
  • [28] Aydin, R., Şahin, B. 2017. The role of Triton X-100 as a surfactant on the CdO nanostructures grown by the SILAR method. Journal of Alloys and Compounds, 705 (2017), 9-13.
  • [29] Novikova, A. A., Moiseeva, D. Y., Karyukov, E. V., Kalinichenko, A. A. 2016. Facile prepation photocatalytically active CuO plate-like nanoparticles from brochantite. Materials Letters, 167 (2016), 165-169.
  • [30] Zhang, Q., Zhang, K., Xu, D., Yang, G., Huang, H., Nie, F., Liu, C., Yang, S. 2014. CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties and applications. Progress in Materials Science, 60 (2014), 208-337.
  • [31] Saien, J., Asadabadi, S. 2011. Synergistic adsorption Triton X-100 and CTAB surfactants at the toluene + water interface. Fluid Phase Equilibria, 307(2011), 16-23
  • [32] Barry, F. J., Cunnane V. J. 2002. Synergistic effects of organic additives on the discharge, nucleation and growth mechanisms of tin at polycrystalline copper electrodes. Journal of Electroanalytical Chemistry, 537 (2002), 151-163.
  • [33] Gürbüz, E., Aydin, R., Şahin, B. 2018. A study of influences of transition metal (Mn, Ni) co-doping on the morphological, structural and optical properties of nanostructured CdO films. J Mater Sci: Mater Electron, 29(2018), 1823-1831.
  • [34] Ganesan K. P., Anadhan, N., Dharuman, V. , Sami, P., Pannerselvam, R., Marimuthu, T. 2017. Electrochemically modified crystal orientation, surface morphology and optical properties using CTAB on Cu2O thin films. Results in Physics, 7(2017), 82-86.
  • [35] Afzal, M., Naik, P. S., Nadaf, L. I., Shaikh, I. N. 2016. SnO2-Surfactant Composite Films for Superior Gas Sensitivity. SSRG International Journal of Applied Physics (SSRG-IJAP), 3:5 (2016), 1-5.
  • [36] Farahmandjou, M. 2010. Effect of LABS and Triton X-100 surfactants on the particle size of nanocrystalline ITO powder. Optoelectronics And Advanced Materials – Rapid Communications, 4:7(2010), 986-988
  • [37] Suwanchawalit, C., Buddee, S., Wongnawa, S. 2017. Triton X-100 induced cuboid-like BiVO4 microsphere with high photocatalytic performance. Journal Of Environmental Sciences, 55 (2017) 257 – 265
  • [38] Gupta, R. K., Serbetci, Z., Yakuphanoglu, F. 2012. Bandgap variation in size controlled nanostructured Li–Ni co-doped CdO thin films. Journal of Alloys and Compounds, 515 (2012), 96–100.
  • [39] Marotti, R.E., Giorgi, P., Machado, G., Dalchiele, E.A. 2006. Crystallite size dependence of band gap energy for electrodeposited ZnO grown at different temperatures, Solar Energy Materials & Solar Cells, 90 (2006), 2356–2361.
There are 39 citations in total.

Details

Journal Section Articles
Authors

Raşit Aydın

Bünyamin Şahin

Publication Date August 15, 2018
Published in Issue Year 2018 Volume: 22 Issue: 2

Cite

APA Aydın, R., & Şahin, B. (2018). Enhancement Physical Performance of Nanostructured CuO Films via Surfactant TX-100. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 545-551.
AMA Aydın R, Şahin B. Enhancement Physical Performance of Nanostructured CuO Films via Surfactant TX-100. SDÜ Fen Bil Enst Der. August 2018;22(2):545-551.
Chicago Aydın, Raşit, and Bünyamin Şahin. “Enhancement Physical Performance of Nanostructured CuO Films via Surfactant TX-100”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, no. 2 (August 2018): 545-51.
EndNote Aydın R, Şahin B (August 1, 2018) Enhancement Physical Performance of Nanostructured CuO Films via Surfactant TX-100. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 2 545–551.
IEEE R. Aydın and B. Şahin, “Enhancement Physical Performance of Nanostructured CuO Films via Surfactant TX-100”, SDÜ Fen Bil Enst Der, vol. 22, no. 2, pp. 545–551, 2018.
ISNAD Aydın, Raşit - Şahin, Bünyamin. “Enhancement Physical Performance of Nanostructured CuO Films via Surfactant TX-100”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/2 (August 2018), 545-551.
JAMA Aydın R, Şahin B. Enhancement Physical Performance of Nanostructured CuO Films via Surfactant TX-100. SDÜ Fen Bil Enst Der. 2018;22:545–551.
MLA Aydın, Raşit and Bünyamin Şahin. “Enhancement Physical Performance of Nanostructured CuO Films via Surfactant TX-100”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 22, no. 2, 2018, pp. 545-51.
Vancouver Aydın R, Şahin B. Enhancement Physical Performance of Nanostructured CuO Films via Surfactant TX-100. SDÜ Fen Bil Enst Der. 2018;22(2):545-51.

e-ISSN: 1308-6529