BibTex RIS Cite

Ankara Çayı’na ait Pleistosen Yaşlı Teras Çökellerinin Jeokimyasal Özellikleri

Year 2018, Volume: 22 Issue: 2, 717 - 726, 15.08.2018

Abstract

Bu çalışmada, Ankara Çayı’na ait Pleistosen yaşlı teras çökellerinin jeokimyasal özelliklerinin belirlenmesi ve buna bağlı olarak kaynak alanındaki ayrışma derecesi, sedimanter döngü tarihçesi ve kaynak kayaların belirlenmesi amaçlanmıştır. İncelenen çökellerin CIA, PIA ve ICV değerleri sırasıyla 58.6, 58.7 ve 1.58 olarak belirlenmiştir. Söz konusu çökellerin genel olarak basit sedimanter döngüye maruz kaldığı ve kaynak alanından çok uzaklara taşınmadığı için çökellerin kimyasal bileşimlerinin çoğunlukla kaynak kaya bileşiminin kontrolü altında olduğu saptanmıştır. İncelen örneklerin Al2O3/TiO2, La/Sc, Co/Th ve Th/Sc oranlarının sırasıyla 8-21, 2.52-4.4, 1.50-2.19 ve 0.70-1.03 arasında değiştiği belirlenmiştir. Ayrıca, çökeller negatif Eu anomalisi ve yüksek HNTE/ANTE oranları içermektedir. Bu veriler doğrultusunda, çalışma alanında muhtemelen, zayıf-orta kimyasal ayrışma, zaman zaman yüksek tektonik aktivite ve yüksek erozyon olduğu, teras çökellerin ortaç veya felsik-mafik bileşimli kaynaktan malzeme aldığı ve kimyasal olarak olgun olmadığı kanısına varılmıştır.

References

  • [1] Taylor, S. R., McLennan, S. M. 1985.The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publishing.
  • [2] Bhatia, M. R., Crook, K. A. W. 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimantary basins, Contributory. - Mineral. Petrology, 92, 181-193.
  • [3] Wronkiewicz, D. J., Condie, K. C. 1987. Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: sourc-area weathering and provenance. Geochimica et Cosmochimica Acta, 53, 1537-1549.
  • [4] Wronkiewicz, D. J., Condie, K. C. 1989. Geochemeistry and provenance of sediments from the Pongola Supergroup, South Africa: evidence for a 3.0 Ga-old continental craton. Geochimica et Cosmochimica Acta, 53. 1537-1549.
  • [5] Wronkiewicz, D. J., Condie, K. C. 1990. Geochemistry and mineralogy of sediments from the Ventersdrop and Transvaal supergroups, South Africa: cratonic evolution during the Early Proterozoic. Geochimica et Cosmochimica Acta, 54, 343-354.
  • [6] Pehlivan, R. 2010. The effect of the weathering in the Büyükmelen River basin on the geochemistry of suspended and bed sediments and the hydrogeochemical characteristics of river water, Duzce, Turkey. Journal of Asian Earth Sciences, 39, 62-75.
  • [7] Varol, M. 2011. Assesment of harmful element contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J. Hazard. Mater. 195, 355-364.
  • [8] Kalender, L. ve Uçar, S. Ç. 2013. Assesment of metal contamination in sediments in the tributaries of the Euphrates River, using pollution indices and determination of the pollution source, Turkey. J. Geochem. Explor., 134, 73-84.
  • [9] Kurt, M. A., Alpaslan, M., Temel, A., Güler, C. 2014. Deliçay ile Tarsus (Berdan)Çayı Arasındaki Bölgede Yer Alan Kuvaterner Sedimanlarının Mineralojik ve Jeokimyasal Özellikleri. Türkiye jeoloji Bülteni, 57, 1-17.
  • [10] Demirkol Kılıç, E. 2015. Çoruh Nehri (Bayburt) Dere Yatağı Çökellerinin Jeokimyasal Özellikleri ve Ağır Metal İçeriğinin İncelenmesi. Yüksek Lisans Tezi, Gümüşhane Üniversitesi, Fen Bilimleri Enstitüsü, Gümüşhane
  • [11] Özkan, Ö. 2016. Ankara Çayı Dere Yatağı Çökellerinin Jeokimyasal, İzotopik Özellikleri ve Ağır Metal İçeriği, Yüksek Lisans Tezi, Gümüşhane Üniversitesi, Fen Bilimleri Enstitüsü, Gümüşhane.
  • [12] Duru, M., Pehlivan, Ş., Şentürk, Y., Yavaş, F., Kar, H., 2004. New results on the Kazdağ Massif in the Northwest Turkey, Turk, J., Earth Sci. 13, 177-186.
  • [13] Okay, A. I., Tüysüz, O., Satır, M., Özkan-Altıner, S., Altıner, D., Sherlock, S., Eren, R., H. 2006. Cretaceous and Triassic subduction-accretion HP-LT metamorphism and continental growth in the Central Pontides, Turkey, Geol. Soc. Am. Bull. 118,1247-1269.
  • [14] Nzegge, O.M., Satır, M., Siebel, W., Taubald, H., 2006. Geochemical and isotopic constraints on the genesis of the Late Paleozoic Deliktaş and Sivrikaya granites from the Kastamonu granitoid belt (Central Pontides, Turkey). Neues Jb. Miner. Abh. 183, 27-40.
  • [15] Topuz, G., Altherr, R., Schwarz, W. H., Dokuz, A., Meyer, H.-P., 2007. Variscan amphibolite-facies rocks from the Kurtoğlu metamorphic complex (Gümüşhane area, Eastern Pontides, Turkey). Int. J. . Earth Sci. (Geol Rundsch) 96, 861-873.
  • [16] Sarifakioglu, E., Dilek, Y., Sevin, M. 2014. Jurassic-Paleogene intraoceanic magmatic evolution of the Ankara Mélange, north-central Anatolia, Turkey. Solid Earth 5, 77-108.
  • [17] MTA, 2001. Türkiye’nin 1/500 000 ölçekli jeolojik haritası, MTA Genel Müdürlüğü, Ankara, Türkiye.
  • [18] Tekeli, O. 1981. Subduction complex of pre- Jurassic age, Northern Anatolia, Turkey. Geology 9, 68-72.
  • [19] Güleç, N. 1994. Rb-Sr isotope data from the Agacoren granitoid (east of Tuz Gölü): geochemical and genetical implications, Turk. J. Earth Sci. 3,39-43.
  • [20] Boztuğ., D. 2000. S-I-A type intrusive associations: geodynamic significance of synchronism between metamorphism and magmatism in Central Anatolia, Turkey, in: Tectonics and Magmatism in Turkey and the Surrounding Area. Bozkurt, E., Winchester, J.A., Piper J.D.A. ed. 2000. Geological Society of London Special Publication 173-441-458.
  • [21] Kadıoğlu, Y. K., Dilek, Y., Güleç, N., Foland, K. A. 2003. Tectonomagmatic evolution of bimodal plutons in the Central Anatolian Crystalline Complex, Turkey. J. Geol. 111,671-690.
  • [22] Kadıoğlu, Y. K., Dilek, Y., Foland, K. A. 2006. Slab breakoff and syncollisional origin of the Late Cretaceous magmatism in the Central Anatolian Crystalline Complex, Turkey, in: postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia. Dilek, Y., Pavlides, S. ed. 2006. S. Geol. S. Am. S. 409, 381-415.
  • [23] Ilbeyli, N., Pearce, J.A., Thirwall, M.F., Mitchell, J.G. 2004. Petrogenesis of collision-related plutonics in Central Anatolia, Turkey. Lithos 72, 163-182.
  • [24] Akyürek, B., Duru, M., Sütçü, Y.F., Papak, İ., Şaroğlu, F., Pehlivan, N., Gönenç, O., Granit, S. Yaşar, T. 1997. 1/100 000 Ölçekli Açınsama Nitelikli Türkiye Jeoloji Haritaları Ankara-İ29 Paftası Jeoloji Etütleri Dairesi Ankara, 55.
  • [25] Bilgin, Z.B., Oğuz, F., Sevin, M., Parlak O., Erdem, Y., Özden U.A. 2009. 1/100 000 Ölçekli Açınsama Nitelikli Türkiye Jeoloji Haritaları Ankara-İ28 Paftası. Ankara: Jeoloji Etütleri Dairesi, 11215.
  • [26] Gümüş, M.K. 2016. Ankara Çayı’na Ait Eski Alüvyonlarının Jeokimyasal ve İzotopik Özelliklerinin İncelenmesi. Yüksek Lisans Tezi, Gümüşhane Üniversitesi, Fen Bilimleri Enstitüsü, Gümüşhane.
  • [27] Bauluz B., Mayayo M. J., Fernandez-Nieto C. 2000. Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian Range (NE Spain): implications for source-area weathering, sorting, provenance, and tectonic setting. Chemical Geology 168, 135 – 150.
  • [28] Fedo, C. M., Nesbitt, H. W., Young, G. M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rock sand paleosols, with implications for paleoweathering conditions and provenance. Geology, 23, 921-924.
  • [29] Nesbitt, H. W., Young, G. M. 1982. Early Proteozoic climate and plate motions inferred from major element chemistry of lutites. Nature, 299, 715-717.
  • [30] Cullers R. L., Podkovyrov, V. N. 2002. The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic U group, southeastern Russia, Precambrian Research, 117, 157-183.
  • [31] Blatt, H., Middleton, G., Murray, R. 1980. Origin of sedimentary rock . Prentice-Hall: Wiley.
  • [32] Linn, A. M., DePaolo, J. 1993. Provenanace controls on the Nd-Sr-O isotopic composition of Sandstones: Example from Late Mesozoic Great Valley forearc basin, California. Johnson, M. J., Basu, A. ed. 1993. Geological Society of America Special Paper. Pensilvanya: Elsevier.
  • [33] Kamp P. C., Leake, B. E. 1985. Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin. Transaction of the Royal Society of Edinburg, Earth Science, 76, 411-449.
  • [34] McLennan, S. M. 1989. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes, Reviews in Mineralogy and Geochemistry, 21, 169-200.
  • [35] Cullers, R. L. 1994. The controls on the major and trace element variation of shales, siltstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA, Geochimic. Cosmochimic. Acta, 58, 4955-4972.
  • [36] McLennan, S. M. 2003. Sedimentary silica on Mars Geology. 31, 315-318.
  • [37] McLennan, S. M., Hemming, S., Mcdaniel, D. K., Hanson, G. N. 1993. Geochemical approaches to sedimentation, provenance, and tectonics. Johnson, M.J. and Basu, A. ed. 1993. Processes Controlling the Composition of Clastic Sediments, 21-40. Geol. Soc. Am. Spec. Pub., 284.
  • [38] Hayashi, Ken-I., Fujisawa, H., Holland, H.D., Ohmoto, H. 1997. Geochemistry of 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61, 4115-4137.
  • [39] He, B., Xu, Y. G., Zhong Y. T., Guan, J. P. 2010. The Guadalupian-Lopingian boundary mudstones at Chaotian (SW China) are clastic rocks rather than acidic tuffs: implication for temporal coincidence between the end-Guadalupian mass extinction and the Emeishan volcanism, Lithos, 119,. 10-19.
  • [40] Huang, H., Du, Y.S., Yang, J. H., Zhou, L., Hu, L. S., Huang, H. W., Huang, A. Q. 2014. Origin of Permian basalts and clastic rocks in Napo, Southerwest China: Implications for the erosion and eruption of the Emeishan large igneous province, Lithos, 208-209, 324-338.
  • [41] Floyd P. A., Winchester, J. A., Park, R. G. 1989. Geochemistry and tectonic setting of Lewisian clastic metasediments from the early Proterozoic loch maree group of Gairloch, NW Scotland, Precambrian Research, 45, 203-214.
  • [42] Wang, Y., Long, X., Wilde, A. A., Xu, H., Sun, M., Xiao, W. 2014. Provenance of Early Paleozoic metasediments in the central Chinese Altai: Implication for tectonic affinity of the Altai-Mongolia terrane in the Central Asian Orogenic Belt, Lithos, 210-211, 57-68.
  • [43] Floyd, P. A., Leveridge, B. E. 1987. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. Journal of the Geological Society (London), 144, 531-542.
  • [44] Cullers, R. L., Graf, J. 1983. Rare earth elements in igneous rocks of the continental crust: intermediate and silicic rocks, ore petrogenesis. Henderson, P. ed 1983. Rare-Earth Geochemistry. Elsevier, Amsterdam, 275-312.
  • [45] Haskin, L. A., Frey, F. A., Schmitt A. A., Smith, R. H. 1966. Meteoritic, solar and terrestrial rare-earth distributions, Phys. and Chem. Earth, 7, 167-321.
Year 2018, Volume: 22 Issue: 2, 717 - 726, 15.08.2018

Abstract

References

  • [1] Taylor, S. R., McLennan, S. M. 1985.The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publishing.
  • [2] Bhatia, M. R., Crook, K. A. W. 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimantary basins, Contributory. - Mineral. Petrology, 92, 181-193.
  • [3] Wronkiewicz, D. J., Condie, K. C. 1987. Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: sourc-area weathering and provenance. Geochimica et Cosmochimica Acta, 53, 1537-1549.
  • [4] Wronkiewicz, D. J., Condie, K. C. 1989. Geochemeistry and provenance of sediments from the Pongola Supergroup, South Africa: evidence for a 3.0 Ga-old continental craton. Geochimica et Cosmochimica Acta, 53. 1537-1549.
  • [5] Wronkiewicz, D. J., Condie, K. C. 1990. Geochemistry and mineralogy of sediments from the Ventersdrop and Transvaal supergroups, South Africa: cratonic evolution during the Early Proterozoic. Geochimica et Cosmochimica Acta, 54, 343-354.
  • [6] Pehlivan, R. 2010. The effect of the weathering in the Büyükmelen River basin on the geochemistry of suspended and bed sediments and the hydrogeochemical characteristics of river water, Duzce, Turkey. Journal of Asian Earth Sciences, 39, 62-75.
  • [7] Varol, M. 2011. Assesment of harmful element contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J. Hazard. Mater. 195, 355-364.
  • [8] Kalender, L. ve Uçar, S. Ç. 2013. Assesment of metal contamination in sediments in the tributaries of the Euphrates River, using pollution indices and determination of the pollution source, Turkey. J. Geochem. Explor., 134, 73-84.
  • [9] Kurt, M. A., Alpaslan, M., Temel, A., Güler, C. 2014. Deliçay ile Tarsus (Berdan)Çayı Arasındaki Bölgede Yer Alan Kuvaterner Sedimanlarının Mineralojik ve Jeokimyasal Özellikleri. Türkiye jeoloji Bülteni, 57, 1-17.
  • [10] Demirkol Kılıç, E. 2015. Çoruh Nehri (Bayburt) Dere Yatağı Çökellerinin Jeokimyasal Özellikleri ve Ağır Metal İçeriğinin İncelenmesi. Yüksek Lisans Tezi, Gümüşhane Üniversitesi, Fen Bilimleri Enstitüsü, Gümüşhane
  • [11] Özkan, Ö. 2016. Ankara Çayı Dere Yatağı Çökellerinin Jeokimyasal, İzotopik Özellikleri ve Ağır Metal İçeriği, Yüksek Lisans Tezi, Gümüşhane Üniversitesi, Fen Bilimleri Enstitüsü, Gümüşhane.
  • [12] Duru, M., Pehlivan, Ş., Şentürk, Y., Yavaş, F., Kar, H., 2004. New results on the Kazdağ Massif in the Northwest Turkey, Turk, J., Earth Sci. 13, 177-186.
  • [13] Okay, A. I., Tüysüz, O., Satır, M., Özkan-Altıner, S., Altıner, D., Sherlock, S., Eren, R., H. 2006. Cretaceous and Triassic subduction-accretion HP-LT metamorphism and continental growth in the Central Pontides, Turkey, Geol. Soc. Am. Bull. 118,1247-1269.
  • [14] Nzegge, O.M., Satır, M., Siebel, W., Taubald, H., 2006. Geochemical and isotopic constraints on the genesis of the Late Paleozoic Deliktaş and Sivrikaya granites from the Kastamonu granitoid belt (Central Pontides, Turkey). Neues Jb. Miner. Abh. 183, 27-40.
  • [15] Topuz, G., Altherr, R., Schwarz, W. H., Dokuz, A., Meyer, H.-P., 2007. Variscan amphibolite-facies rocks from the Kurtoğlu metamorphic complex (Gümüşhane area, Eastern Pontides, Turkey). Int. J. . Earth Sci. (Geol Rundsch) 96, 861-873.
  • [16] Sarifakioglu, E., Dilek, Y., Sevin, M. 2014. Jurassic-Paleogene intraoceanic magmatic evolution of the Ankara Mélange, north-central Anatolia, Turkey. Solid Earth 5, 77-108.
  • [17] MTA, 2001. Türkiye’nin 1/500 000 ölçekli jeolojik haritası, MTA Genel Müdürlüğü, Ankara, Türkiye.
  • [18] Tekeli, O. 1981. Subduction complex of pre- Jurassic age, Northern Anatolia, Turkey. Geology 9, 68-72.
  • [19] Güleç, N. 1994. Rb-Sr isotope data from the Agacoren granitoid (east of Tuz Gölü): geochemical and genetical implications, Turk. J. Earth Sci. 3,39-43.
  • [20] Boztuğ., D. 2000. S-I-A type intrusive associations: geodynamic significance of synchronism between metamorphism and magmatism in Central Anatolia, Turkey, in: Tectonics and Magmatism in Turkey and the Surrounding Area. Bozkurt, E., Winchester, J.A., Piper J.D.A. ed. 2000. Geological Society of London Special Publication 173-441-458.
  • [21] Kadıoğlu, Y. K., Dilek, Y., Güleç, N., Foland, K. A. 2003. Tectonomagmatic evolution of bimodal plutons in the Central Anatolian Crystalline Complex, Turkey. J. Geol. 111,671-690.
  • [22] Kadıoğlu, Y. K., Dilek, Y., Foland, K. A. 2006. Slab breakoff and syncollisional origin of the Late Cretaceous magmatism in the Central Anatolian Crystalline Complex, Turkey, in: postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia. Dilek, Y., Pavlides, S. ed. 2006. S. Geol. S. Am. S. 409, 381-415.
  • [23] Ilbeyli, N., Pearce, J.A., Thirwall, M.F., Mitchell, J.G. 2004. Petrogenesis of collision-related plutonics in Central Anatolia, Turkey. Lithos 72, 163-182.
  • [24] Akyürek, B., Duru, M., Sütçü, Y.F., Papak, İ., Şaroğlu, F., Pehlivan, N., Gönenç, O., Granit, S. Yaşar, T. 1997. 1/100 000 Ölçekli Açınsama Nitelikli Türkiye Jeoloji Haritaları Ankara-İ29 Paftası Jeoloji Etütleri Dairesi Ankara, 55.
  • [25] Bilgin, Z.B., Oğuz, F., Sevin, M., Parlak O., Erdem, Y., Özden U.A. 2009. 1/100 000 Ölçekli Açınsama Nitelikli Türkiye Jeoloji Haritaları Ankara-İ28 Paftası. Ankara: Jeoloji Etütleri Dairesi, 11215.
  • [26] Gümüş, M.K. 2016. Ankara Çayı’na Ait Eski Alüvyonlarının Jeokimyasal ve İzotopik Özelliklerinin İncelenmesi. Yüksek Lisans Tezi, Gümüşhane Üniversitesi, Fen Bilimleri Enstitüsü, Gümüşhane.
  • [27] Bauluz B., Mayayo M. J., Fernandez-Nieto C. 2000. Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian Range (NE Spain): implications for source-area weathering, sorting, provenance, and tectonic setting. Chemical Geology 168, 135 – 150.
  • [28] Fedo, C. M., Nesbitt, H. W., Young, G. M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rock sand paleosols, with implications for paleoweathering conditions and provenance. Geology, 23, 921-924.
  • [29] Nesbitt, H. W., Young, G. M. 1982. Early Proteozoic climate and plate motions inferred from major element chemistry of lutites. Nature, 299, 715-717.
  • [30] Cullers R. L., Podkovyrov, V. N. 2002. The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic U group, southeastern Russia, Precambrian Research, 117, 157-183.
  • [31] Blatt, H., Middleton, G., Murray, R. 1980. Origin of sedimentary rock . Prentice-Hall: Wiley.
  • [32] Linn, A. M., DePaolo, J. 1993. Provenanace controls on the Nd-Sr-O isotopic composition of Sandstones: Example from Late Mesozoic Great Valley forearc basin, California. Johnson, M. J., Basu, A. ed. 1993. Geological Society of America Special Paper. Pensilvanya: Elsevier.
  • [33] Kamp P. C., Leake, B. E. 1985. Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin. Transaction of the Royal Society of Edinburg, Earth Science, 76, 411-449.
  • [34] McLennan, S. M. 1989. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes, Reviews in Mineralogy and Geochemistry, 21, 169-200.
  • [35] Cullers, R. L. 1994. The controls on the major and trace element variation of shales, siltstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA, Geochimic. Cosmochimic. Acta, 58, 4955-4972.
  • [36] McLennan, S. M. 2003. Sedimentary silica on Mars Geology. 31, 315-318.
  • [37] McLennan, S. M., Hemming, S., Mcdaniel, D. K., Hanson, G. N. 1993. Geochemical approaches to sedimentation, provenance, and tectonics. Johnson, M.J. and Basu, A. ed. 1993. Processes Controlling the Composition of Clastic Sediments, 21-40. Geol. Soc. Am. Spec. Pub., 284.
  • [38] Hayashi, Ken-I., Fujisawa, H., Holland, H.D., Ohmoto, H. 1997. Geochemistry of 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61, 4115-4137.
  • [39] He, B., Xu, Y. G., Zhong Y. T., Guan, J. P. 2010. The Guadalupian-Lopingian boundary mudstones at Chaotian (SW China) are clastic rocks rather than acidic tuffs: implication for temporal coincidence between the end-Guadalupian mass extinction and the Emeishan volcanism, Lithos, 119,. 10-19.
  • [40] Huang, H., Du, Y.S., Yang, J. H., Zhou, L., Hu, L. S., Huang, H. W., Huang, A. Q. 2014. Origin of Permian basalts and clastic rocks in Napo, Southerwest China: Implications for the erosion and eruption of the Emeishan large igneous province, Lithos, 208-209, 324-338.
  • [41] Floyd P. A., Winchester, J. A., Park, R. G. 1989. Geochemistry and tectonic setting of Lewisian clastic metasediments from the early Proterozoic loch maree group of Gairloch, NW Scotland, Precambrian Research, 45, 203-214.
  • [42] Wang, Y., Long, X., Wilde, A. A., Xu, H., Sun, M., Xiao, W. 2014. Provenance of Early Paleozoic metasediments in the central Chinese Altai: Implication for tectonic affinity of the Altai-Mongolia terrane in the Central Asian Orogenic Belt, Lithos, 210-211, 57-68.
  • [43] Floyd, P. A., Leveridge, B. E. 1987. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. Journal of the Geological Society (London), 144, 531-542.
  • [44] Cullers, R. L., Graf, J. 1983. Rare earth elements in igneous rocks of the continental crust: intermediate and silicic rocks, ore petrogenesis. Henderson, P. ed 1983. Rare-Earth Geochemistry. Elsevier, Amsterdam, 275-312.
  • [45] Haskin, L. A., Frey, F. A., Schmitt A. A., Smith, R. H. 1966. Meteoritic, solar and terrestrial rare-earth distributions, Phys. and Chem. Earth, 7, 167-321.
There are 45 citations in total.

Details

Journal Section Articles
Authors

Çiğdem Saydam Eker

Mustafa Kemal Gümüş This is me

Publication Date August 15, 2018
Published in Issue Year 2018 Volume: 22 Issue: 2

Cite

APA Saydam Eker, Ç., & Gümüş, M. K. (2018). Ankara Çayı’na ait Pleistosen Yaşlı Teras Çökellerinin Jeokimyasal Özellikleri. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 717-726. https://doi.org/10.19113/sdufbed.67972
AMA Saydam Eker Ç, Gümüş MK. Ankara Çayı’na ait Pleistosen Yaşlı Teras Çökellerinin Jeokimyasal Özellikleri. J. Nat. Appl. Sci. August 2018;22(2):717-726. doi:10.19113/sdufbed.67972
Chicago Saydam Eker, Çiğdem, and Mustafa Kemal Gümüş. “Ankara Çayı’na Ait Pleistosen Yaşlı Teras Çökellerinin Jeokimyasal Özellikleri”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, no. 2 (August 2018): 717-26. https://doi.org/10.19113/sdufbed.67972.
EndNote Saydam Eker Ç, Gümüş MK (August 1, 2018) Ankara Çayı’na ait Pleistosen Yaşlı Teras Çökellerinin Jeokimyasal Özellikleri. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 2 717–726.
IEEE Ç. Saydam Eker and M. K. Gümüş, “Ankara Çayı’na ait Pleistosen Yaşlı Teras Çökellerinin Jeokimyasal Özellikleri”, J. Nat. Appl. Sci., vol. 22, no. 2, pp. 717–726, 2018, doi: 10.19113/sdufbed.67972.
ISNAD Saydam Eker, Çiğdem - Gümüş, Mustafa Kemal. “Ankara Çayı’na Ait Pleistosen Yaşlı Teras Çökellerinin Jeokimyasal Özellikleri”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/2 (August 2018), 717-726. https://doi.org/10.19113/sdufbed.67972.
JAMA Saydam Eker Ç, Gümüş MK. Ankara Çayı’na ait Pleistosen Yaşlı Teras Çökellerinin Jeokimyasal Özellikleri. J. Nat. Appl. Sci. 2018;22:717–726.
MLA Saydam Eker, Çiğdem and Mustafa Kemal Gümüş. “Ankara Çayı’na Ait Pleistosen Yaşlı Teras Çökellerinin Jeokimyasal Özellikleri”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 22, no. 2, 2018, pp. 717-26, doi:10.19113/sdufbed.67972.
Vancouver Saydam Eker Ç, Gümüş MK. Ankara Çayı’na ait Pleistosen Yaşlı Teras Çökellerinin Jeokimyasal Özellikleri. J. Nat. Appl. Sci. 2018;22(2):717-26.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.