BibTex RIS Cite

Triküspit Kalp Kapakçıklarının Üç Boyutlu (3B) Biyobaskı Metotları ile Fabrikasyonu

Year 2018, Volume: 22 Issue: 2, 740 - 745, 15.08.2018
https://doi.org/10.19113/sdufbed.57066

Abstract

Geçen yıllar içerisinde organ transplantasyonu konusunda olan ihtiyaç sürekli olarak artmıştır. Organ naklinin kendisini bir ihtiyaç olarak en çok belli ettiği alanlardan bir tanesi de kalp kapakçığı hastalıklarıdır. Bu sebepler dolayısıyla biyoyazıcılar aracılığı ile yüksek biyouyumluluğa sahip yapay kalp kapakçıkları üretmek mecburidir. Bu çalışmada amaçlanan, kalp kapakçıkları hastalıklarında kullanılmak üzere stereolitografi yöntemi ile triküspit bir kalp kapakçığı üretmektir. Bu çalışmada stereolitografi yöntemi ile yüksek çözünürlülüğe sahip triküspit bir kalp kapakçığı üretilmeye çalışılmış ve temel biyouyumluluk özellikleri incelenmiştir. Sonuç itibari ile aortik bir köke sahip olan triküspit kalp kapakçıkları çeşitli biyomalzemeler aracılığı ile üretilmiştir. Çalışma henüz klinik amaçlarla kullanılmak için çok erken olsa dahi stereolitografinin biyoyazıcı olarak kullanılır olduğunu göstermesi açısından önemlidir.

References

  • [1] US Dep. Health Hum. Serv. 2014. The need is real: data. Donate the gifts of life statistics and figures. US Dep. Health Hum. Serv., Washington, D.C.
  • [2] Driessen, J.V.C., Mol, A., Bouten, C.V.C, Baaijens, F.P.T. 2007. Modeling the mechanics of tissue engineered human heart valve leaflets. J. Biomech. 40 (2007), 325-334.
  • [3] Balguid, A., Rubbens, M.P., Mol, A., Bank, R.A., Bogers, A., Van Kats, J.P., De Mol, B., Baaijens, F.P.T., Bouten, C.V.C., 2007. The role of collagen cross links in biomechanical behaviour of human aortic heart valve leaflets - relevance for tissue engineering. Tissue Eng, 13(2007), 1501-1511.
  • [4] Engelmayr, G.C., Rabkin, E., Sutherland, F.W.H., Schoen, F.J., Mayer, J.E., Sacks, M.S. 2005. The independent role of cylic flexure in the early in vitro development of an engineered heart valve tissue. Biomaterials, 26(2005), 175-187.
  • [5] Sodian, R., Hoerstrup, S.P., Sperling, J.S., Daebritz, S., Martin, D.P., Moran, A.M., Kim, B.S., Schoen, F.J., Vacanti, J.P., Mayer, J.E., 2000a. Early in vivo experience with tissue engineered trileaflet heart valves. Circulation, 102(2000), 22-29.
  • [6] Hoerstrup, S.P., Sodian, R., Daebritz, S., Wang, J., Bacha, E.A., Martin, D.P., Moran, A.M., Guleserian, K.J., Sperling, J.S., Kaushal, S., Vacanti, J.P., Schoen, F.J., Mayer, J.E. 2000. Functional living trileafet heart valves grown in vitro. Circulation 102(2000), 44-49.
  • [7] Bajaj, P., Schweller, R.M., Khademhosseini, A., West, J.L., Bashir, R. 2014. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu. Rev. Biomed. Eng., 16(2014), 247-276.
  • [8] Sodian, R., Loebe, M., Hein, A., Martin, D.P., Hoerstrup, S. 2002. Application of stereolithography for scaffold fabrication for tissue engineered heart valves. ASAIO Journal 48(2002), 12-16.
  • [9] Hosseini, V., Ahadian, S., Ostrovidov, S., Camci-Unal, G., Chen, S., Kaji, H., Khademhosseini, A. 2012. Engineered contractile skeletal muscle tissue on a microgrooved methacrylated gelatin substrate, Tissue Engineering Part A, 18(23-24), 2453-2465
  • [10] Hockaday, L.A., Kang, K.H., Colangelo, N.W, Cheung, P.Y.C., Duan, B., Malone, E., Wu, J., Girardi, L.N., Bonassar, J.L., Lipson, H. 2012. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 4(3), 035005
  • [11] Duan, B., Hockaday, L.A., Kang, K.H., Butcher, J.T. 2013a. 3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels, J. Biomed. Mat. Research Part A, 101A(5), 1255-1264
  • [12] Duan, B., Hockaday, L.A., Kapetanovic, E., Kang, K.H., Butcher, J.T., 2013b, Stiffness and adhesivity control aortic valve interstitial cell behavior within hyaluronic acid based hydrogels. Acta Biomaterialia, 9(8), 7640-7650
  • [13] Duan, B., Kapetanovic, E., Hockaday, L.A., Butcher, J.T. 2014. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomaterialia, 10(5), 1836-1846
  • [14] Chang, C., Boland, E.D., Williams, S.K., Hoying, J.B. 2011. Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. Journal of Biomedical Materials Research, 98B(1), 160-170
  • [15] Li, Y.C., Zhang, Y.S., Akpek, A., Shin, S.R., Khademhosseini, A., 2016, 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials, Biofabrication, 9(2016), 012001
  • [16] Akpek, A., Zhang, Y.S., Khademhosseini, A. 2016, Three Dimensional (3D) Bioprinting of Stereolithography Applied Tissue Engineered Artifical Heart Valves, The Proceedings of XX. National Biomedical Engineering Congress, 1-3 Aralık, İzmir, 45 - 49
  • [17] Öztarhan, A., Akpek, A., Oks, E., Nikolaev, A. 2010. Modifying medical textiles with antibacterial and friction resistance abilities by an alternative nanotextile technology called ion implantation technique. 15th National Biomedical Engineering Meeting, 21-24 April, Antalya, 43-48
  • [18] Nikolaev, A.G., Yushkov, G.Yu, Oks, E.M., Oztarhan, A., Akpek, A., Hames Kocabas, E., Urkac, E.S., Brown I.G. 2014. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation. Applied Surface Science, 310(2014), 51-55.
  • [19] Akpek, A. Youn, C., Kagawa, T. 2013. Temperature measurement control problem of vibrational viscometers considering heat generation and heat transfer effect of oscillators. 9th Asian Control Conference, 23-26 June, 1-6.
  • [20] Akpek, A., Youn, C., Maeda, A., Fujisawa, N., Kagawa, T. 2014. Effect of thermal convection on viscosity measurement in vibrational viscometer. Journal of Flow Control, Measurement & Visualization, 2(2014), 12-17
  • [21] Akpek, A., Youn, C., Kagawa, T. 2014. A study on vibrational viscometers considering temperature distribution effect. Transactions of the Japan Fluid Power System Society, 45.3, 29-36.
  • [22] Liu, W., Heinrich, M.A., Zhou, Y. Akpek, A., Hu, N., Liu, X., Guan, X., Zhong, Z., Jin, X., Khademhosseini, A., Zhang, Y.S. 2017. Extrusion Bioprinting of Shear‐Thinning Gelatin Methacryloyl Bioinks. Advanced Healthcare Materials, 6(12), 1601451.
  • [23] Sari, S., Akpek, A. 2016. Ortam Sıcaklığının Ultrasonik Nebülizatörler Üzerindeki Etkinliğini Ölçen Sistem Tasarımı. Electrical, Electronics and Biomedical Engineering National Conference, 1-3 December, Bursa, 521-525.
  • [24] Uçar, T., Koçak, O., Akpek, A. 2016. New concept design of an insulin pen for visually impaired or blind diabetius mellitus patients. Medical Technologies National Congress, 27-29 October, Antalya, 1-4.
  • [25] Altınsu, B., Koçak, O., Akpek, A. 2016. Design and analysis of an autoclave simulation using MATLAB/Simulink. Medical Technologies National Congress, 27-29 October, Antalya, 1-4.
  • [26] Koçak, O., Kurtuldu, H., Akpek, A., Koçoğlu, A., Eroğlu, O. 2016. A medical waste management model for public private partnership hospitals. Medical Technologies National Congress, 27-29 October, Antalya, 1-4.
  • [27] Akpek, A. 2016. Effect of non-uniform temperature field in viscosity measurement. Journal of Visualization, 19.2 (2016), 291-299.
  • [28] Çiftçi̇oğlu, Ç., Koçak, O., Akpek, A. 2015. Remote control of centrifuge and injection systems via MATLAB and ARDUINO, Medical Technologies National Conference,15-18 October, Bodrum, 1-4
  • [29] Cebeci, S.A., Çiftçioğlu Ç., Koçak, O., Akpek, A. 2015, Electronic Pillbox Design for Demantia Patients, Medical Technologies National Conference, 15-18 October, Bodrum, 1-3.
  • [30] Avci, H., Güzel, F.D., Erol, S., Akpek, A. 2017. Recent advances in organ-on-a-chip technologies and future challenges: A Review. Turkish Journal of Chemistry. DOI: 10.3906/kim-1611-35
  • [31] Koçak, O., Gürel, E., Akpek, A., Koçoğlu, A., 2015 Control of Wheel Chair for Quadriplegia Patients: Design A Bioremotecontrol. 9th International Conference On Electrical and Electronics Engineering, 26-28 November, Bursa, 1-5
  • [32] Akpek, A. 2017. Effect of Ambient Temperature Variations on Particle Dimesions in Ultrasonic Nebulizers during Cold Vaporization. Adv. Sci. Technol. Eng. Syst. J. 2(3), 946-950
Year 2018, Volume: 22 Issue: 2, 740 - 745, 15.08.2018
https://doi.org/10.19113/sdufbed.57066

Abstract

References

  • [1] US Dep. Health Hum. Serv. 2014. The need is real: data. Donate the gifts of life statistics and figures. US Dep. Health Hum. Serv., Washington, D.C.
  • [2] Driessen, J.V.C., Mol, A., Bouten, C.V.C, Baaijens, F.P.T. 2007. Modeling the mechanics of tissue engineered human heart valve leaflets. J. Biomech. 40 (2007), 325-334.
  • [3] Balguid, A., Rubbens, M.P., Mol, A., Bank, R.A., Bogers, A., Van Kats, J.P., De Mol, B., Baaijens, F.P.T., Bouten, C.V.C., 2007. The role of collagen cross links in biomechanical behaviour of human aortic heart valve leaflets - relevance for tissue engineering. Tissue Eng, 13(2007), 1501-1511.
  • [4] Engelmayr, G.C., Rabkin, E., Sutherland, F.W.H., Schoen, F.J., Mayer, J.E., Sacks, M.S. 2005. The independent role of cylic flexure in the early in vitro development of an engineered heart valve tissue. Biomaterials, 26(2005), 175-187.
  • [5] Sodian, R., Hoerstrup, S.P., Sperling, J.S., Daebritz, S., Martin, D.P., Moran, A.M., Kim, B.S., Schoen, F.J., Vacanti, J.P., Mayer, J.E., 2000a. Early in vivo experience with tissue engineered trileaflet heart valves. Circulation, 102(2000), 22-29.
  • [6] Hoerstrup, S.P., Sodian, R., Daebritz, S., Wang, J., Bacha, E.A., Martin, D.P., Moran, A.M., Guleserian, K.J., Sperling, J.S., Kaushal, S., Vacanti, J.P., Schoen, F.J., Mayer, J.E. 2000. Functional living trileafet heart valves grown in vitro. Circulation 102(2000), 44-49.
  • [7] Bajaj, P., Schweller, R.M., Khademhosseini, A., West, J.L., Bashir, R. 2014. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu. Rev. Biomed. Eng., 16(2014), 247-276.
  • [8] Sodian, R., Loebe, M., Hein, A., Martin, D.P., Hoerstrup, S. 2002. Application of stereolithography for scaffold fabrication for tissue engineered heart valves. ASAIO Journal 48(2002), 12-16.
  • [9] Hosseini, V., Ahadian, S., Ostrovidov, S., Camci-Unal, G., Chen, S., Kaji, H., Khademhosseini, A. 2012. Engineered contractile skeletal muscle tissue on a microgrooved methacrylated gelatin substrate, Tissue Engineering Part A, 18(23-24), 2453-2465
  • [10] Hockaday, L.A., Kang, K.H., Colangelo, N.W, Cheung, P.Y.C., Duan, B., Malone, E., Wu, J., Girardi, L.N., Bonassar, J.L., Lipson, H. 2012. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 4(3), 035005
  • [11] Duan, B., Hockaday, L.A., Kang, K.H., Butcher, J.T. 2013a. 3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels, J. Biomed. Mat. Research Part A, 101A(5), 1255-1264
  • [12] Duan, B., Hockaday, L.A., Kapetanovic, E., Kang, K.H., Butcher, J.T., 2013b, Stiffness and adhesivity control aortic valve interstitial cell behavior within hyaluronic acid based hydrogels. Acta Biomaterialia, 9(8), 7640-7650
  • [13] Duan, B., Kapetanovic, E., Hockaday, L.A., Butcher, J.T. 2014. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomaterialia, 10(5), 1836-1846
  • [14] Chang, C., Boland, E.D., Williams, S.K., Hoying, J.B. 2011. Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. Journal of Biomedical Materials Research, 98B(1), 160-170
  • [15] Li, Y.C., Zhang, Y.S., Akpek, A., Shin, S.R., Khademhosseini, A., 2016, 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials, Biofabrication, 9(2016), 012001
  • [16] Akpek, A., Zhang, Y.S., Khademhosseini, A. 2016, Three Dimensional (3D) Bioprinting of Stereolithography Applied Tissue Engineered Artifical Heart Valves, The Proceedings of XX. National Biomedical Engineering Congress, 1-3 Aralık, İzmir, 45 - 49
  • [17] Öztarhan, A., Akpek, A., Oks, E., Nikolaev, A. 2010. Modifying medical textiles with antibacterial and friction resistance abilities by an alternative nanotextile technology called ion implantation technique. 15th National Biomedical Engineering Meeting, 21-24 April, Antalya, 43-48
  • [18] Nikolaev, A.G., Yushkov, G.Yu, Oks, E.M., Oztarhan, A., Akpek, A., Hames Kocabas, E., Urkac, E.S., Brown I.G. 2014. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation. Applied Surface Science, 310(2014), 51-55.
  • [19] Akpek, A. Youn, C., Kagawa, T. 2013. Temperature measurement control problem of vibrational viscometers considering heat generation and heat transfer effect of oscillators. 9th Asian Control Conference, 23-26 June, 1-6.
  • [20] Akpek, A., Youn, C., Maeda, A., Fujisawa, N., Kagawa, T. 2014. Effect of thermal convection on viscosity measurement in vibrational viscometer. Journal of Flow Control, Measurement & Visualization, 2(2014), 12-17
  • [21] Akpek, A., Youn, C., Kagawa, T. 2014. A study on vibrational viscometers considering temperature distribution effect. Transactions of the Japan Fluid Power System Society, 45.3, 29-36.
  • [22] Liu, W., Heinrich, M.A., Zhou, Y. Akpek, A., Hu, N., Liu, X., Guan, X., Zhong, Z., Jin, X., Khademhosseini, A., Zhang, Y.S. 2017. Extrusion Bioprinting of Shear‐Thinning Gelatin Methacryloyl Bioinks. Advanced Healthcare Materials, 6(12), 1601451.
  • [23] Sari, S., Akpek, A. 2016. Ortam Sıcaklığının Ultrasonik Nebülizatörler Üzerindeki Etkinliğini Ölçen Sistem Tasarımı. Electrical, Electronics and Biomedical Engineering National Conference, 1-3 December, Bursa, 521-525.
  • [24] Uçar, T., Koçak, O., Akpek, A. 2016. New concept design of an insulin pen for visually impaired or blind diabetius mellitus patients. Medical Technologies National Congress, 27-29 October, Antalya, 1-4.
  • [25] Altınsu, B., Koçak, O., Akpek, A. 2016. Design and analysis of an autoclave simulation using MATLAB/Simulink. Medical Technologies National Congress, 27-29 October, Antalya, 1-4.
  • [26] Koçak, O., Kurtuldu, H., Akpek, A., Koçoğlu, A., Eroğlu, O. 2016. A medical waste management model for public private partnership hospitals. Medical Technologies National Congress, 27-29 October, Antalya, 1-4.
  • [27] Akpek, A. 2016. Effect of non-uniform temperature field in viscosity measurement. Journal of Visualization, 19.2 (2016), 291-299.
  • [28] Çiftçi̇oğlu, Ç., Koçak, O., Akpek, A. 2015. Remote control of centrifuge and injection systems via MATLAB and ARDUINO, Medical Technologies National Conference,15-18 October, Bodrum, 1-4
  • [29] Cebeci, S.A., Çiftçioğlu Ç., Koçak, O., Akpek, A. 2015, Electronic Pillbox Design for Demantia Patients, Medical Technologies National Conference, 15-18 October, Bodrum, 1-3.
  • [30] Avci, H., Güzel, F.D., Erol, S., Akpek, A. 2017. Recent advances in organ-on-a-chip technologies and future challenges: A Review. Turkish Journal of Chemistry. DOI: 10.3906/kim-1611-35
  • [31] Koçak, O., Gürel, E., Akpek, A., Koçoğlu, A., 2015 Control of Wheel Chair for Quadriplegia Patients: Design A Bioremotecontrol. 9th International Conference On Electrical and Electronics Engineering, 26-28 November, Bursa, 1-5
  • [32] Akpek, A. 2017. Effect of Ambient Temperature Variations on Particle Dimesions in Ultrasonic Nebulizers during Cold Vaporization. Adv. Sci. Technol. Eng. Syst. J. 2(3), 946-950
There are 32 citations in total.

Details

Journal Section Articles
Authors

Ali Akpek

Publication Date August 15, 2018
Published in Issue Year 2018 Volume: 22 Issue: 2

Cite

APA Akpek, A. (2018). Triküspit Kalp Kapakçıklarının Üç Boyutlu (3B) Biyobaskı Metotları ile Fabrikasyonu. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 740-745. https://doi.org/10.19113/sdufbed.57066
AMA Akpek A. Triküspit Kalp Kapakçıklarının Üç Boyutlu (3B) Biyobaskı Metotları ile Fabrikasyonu. J. Nat. Appl. Sci. August 2018;22(2):740-745. doi:10.19113/sdufbed.57066
Chicago Akpek, Ali. “Triküspit Kalp Kapakçıklarının Üç Boyutlu (3B) Biyobaskı Metotları Ile Fabrikasyonu”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, no. 2 (August 2018): 740-45. https://doi.org/10.19113/sdufbed.57066.
EndNote Akpek A (August 1, 2018) Triküspit Kalp Kapakçıklarının Üç Boyutlu (3B) Biyobaskı Metotları ile Fabrikasyonu. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 2 740–745.
IEEE A. Akpek, “Triküspit Kalp Kapakçıklarının Üç Boyutlu (3B) Biyobaskı Metotları ile Fabrikasyonu”, J. Nat. Appl. Sci., vol. 22, no. 2, pp. 740–745, 2018, doi: 10.19113/sdufbed.57066.
ISNAD Akpek, Ali. “Triküspit Kalp Kapakçıklarının Üç Boyutlu (3B) Biyobaskı Metotları Ile Fabrikasyonu”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/2 (August 2018), 740-745. https://doi.org/10.19113/sdufbed.57066.
JAMA Akpek A. Triküspit Kalp Kapakçıklarının Üç Boyutlu (3B) Biyobaskı Metotları ile Fabrikasyonu. J. Nat. Appl. Sci. 2018;22:740–745.
MLA Akpek, Ali. “Triküspit Kalp Kapakçıklarının Üç Boyutlu (3B) Biyobaskı Metotları Ile Fabrikasyonu”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 22, no. 2, 2018, pp. 740-5, doi:10.19113/sdufbed.57066.
Vancouver Akpek A. Triküspit Kalp Kapakçıklarının Üç Boyutlu (3B) Biyobaskı Metotları ile Fabrikasyonu. J. Nat. Appl. Sci. 2018;22(2):740-5.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.