BibTex RIS Cite

Amin Grupları ile Fonksiyonelleştirilmiş Poli(vinil alkol) Aşı Kopolimerinin İlaç Salım Sistemlerinde Kullanımının İncelenmesi

Year 2018, Volume: 22 Issue: 2, 954 - 960, 15.08.2018
https://doi.org/10.19113/sdufbed.84289

Abstract

Bu çalışmada, çapraz bağlı poli(vinil alkol), CPVA üzerine glisidil metakrilat (GMA) monomerinin aşı polimerizasyonu gerçekleştirildikten sonra amin grupları ile modifiye edilerek fonksiyonelleştirilmesi amaçlanmıştır. Elde edilen ürünlerin karakterizasyonu Fourier dönüşümlü infrared spektroskopisi (FT-IR) ve taramalı elektron mikroskobu (SEM) ile gerçekleştirilmiştir.  Fonksiyonelleştirilmiş ürünün farklı pH’larda farklı şişme denge değerlerine (SDD) sahip olduğu bulunmuştur, en yüksek SDD değeri pH 2,1’de elde edilmiştir. Yapılan ilaç yükleme ve salım çalışmalarında anyonik yapıdaki tripan mavisi (TB) ve iyonik olmayan yapıdaki 5-flurasil (5-FU) model ilaç olarak seçilmiştir. Sonuç olarak, elde edilen ürünler ile ilaçların farklı yük gruplarına sahip olması nedeni ile ürünlere yüklenen ilaç miktarları ve dolayısıyla salım miktarlarının farklı olduğu görülmüştür.

References

  • [1] Gupta, P., Vermani, K., Garg, S. 2002. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discovery Today, 7(2002), 569-579.
  • [2] Qiu, Y., Park, K. 2001. Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews, 53(2002), 321–339.
  • [3] Peppas, N.A., Bures, P., Leobandung, W., Ichikawa, H. 2000. Hydrogels in pharmaceutical formulations. European Journal of Pharmaceutics and Biopharmaceutics, 50(2000), 27-46.
  • [4] Lin, C.C., Metters, A.T. 2006. Hydrogels in controlled release formulations: Network design and mathematical modeling. Advanced Drug Delivery Reviews, 58(2006), 1379-1408.
  • [5] Lee, W.F., Chiu, R.J. 2002. Investigation of charge effects on drug release behavior for ionic thermosensitive hydrogels. Materials Science and Engineering, C20(2002), 161-166.
  • [6] Zhou, W.Y., Guo, B., Liu, M., Liao, R., Rabie, A.B.M., Jia, D. 2009. Poly(vinyl alcohol)/halloysite nanotubes bionanocomposite films: properties and in vitro osteoblasts and fibroblasts response. Journal of Biomedical Materials Research Part A, 93A(2009), 1574-1587.
  • [7] Hassan, C.M., Peppas N.A. 2000. Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Advances in Polymer Science, 153(2000), 37-65.
  • [8] Li, P., Ruizhen, X., Wang, W., Li, X., Xu, Z., Yeung, K.W.K., Chu, P.K. 2013. Thermosensitive poly(N-isopropylacrylamide-co-glycidyl methacrylate) microgels for controlled drug release. Colloids and Surfaces B: Biointerfaces, 101(2013), 251-255.
  • [9] Nava-Ortiz, C.A.B., Burillo, G., Bucio, E., Alvarez-Lorenzo, C. 2009. Modification of polyethylene films by radiation grafting of glycidyl methacrylate and immobilization of β-cyclodextrin. Radiation Physics and Chemistry, 78(2009), 19-24.
  • [10] Kartal, F., Akkaya, A., Kilinc, A. 2009. Immobilization of porcine pancreatic lipase on glycidyl methacrylate grafted poly vinyl alcohol. Journal of Molecular Catalysis B: Enzymatic, 57(2009), 55-61.
  • [11] Crispim, E.G., Piai, J.F., Fajardo, A.R., Ramos, E.R.F., Nakamura, T.U., Nakamura, C.V., Rubira, A.F., Muniz, E.C. 2012. Hydrogels based on chemically modified poly(vinyl alcohol) (PVA-GMA) and PVA-GMA/chondroitin sulfate: Preparation and characterization. eXPRESS Polymer Letters, 6(2012), 383-395.
  • [12] Ghugare, S.V., Mozetic, P., Paradossi, G. 2009. Temperature-sensitive poly(vinyl alcohol)/ poly(methacrylate-co-N-isopropyl acrylamide) microgels for doxorubicin delivery. Biomacromolecules, 10(2009), 1589-1596.
  • [13] Demir, Ş. 2013. Sıcaklığa duyarlı poli(vinil alkol) esaslı polimerlerin sentez ve karakterizasyonu. İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 75s, İstanbul.
  • [14] Kasgoz, H., Ozbas, Z., Esen, E., Sahin, C.P., Gurdag, G. 2013. Removal of copper(II) ions with a thermoresponsive cellulose-g-poly(N-isopropyl acrylamide) copolymer. Journal of Applied Polymer Science, 130(2013), 4440-4448.
  • [15] Sun, T., Xu, P., Liu, Q., Xue, J., Xie, W. 2003. Graft copolymerization of methacrylic acid onto carboxymethyl chitosan. European Polymer Journal, 39(2003), 189-192.
  • [16] Emik, S. 2014. Preparation and characterization of an IPN type chelating resin containing amino and carboxyl groups for removal of Cu(II) from aqueous solutions, Reactive and Functional Polymers, 75(2014), 63- 74.
  • [17] Mansur, H.S., Sadahira, C.M., Souza, A.N., Mansur, A.A.P. 2008. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Materials Science and Engineering, C28(2008), 539-548.
  • [18] Çelik, S.Ü., Bozkurt, A. 2008. Preparation and proton conductivity of acid-doped 5-aminotetrazole functional poly(glycidyl methacrylate). European Polymer Journal, 44(2008), 213-218.
  • [19] Liu, C., Bai, R., Hong, L. 2006. Diethylenetriamine-grafted poly(glycidyl methacrylate) adsorbent for effective copper ion adsorption. Journal of Colloid and Interface Science, 303(2006), 99-108.
  • [20] Bayramoğlu, G., Arıca, M.Y. 2005. Ethylenediamine grafted poly (glycidylmethacrylate-co-methylmethacrylate) adsorbent for removal of chromate anions. Separation and Purification Technology, 45(2005), 192-199.
  • [21] Dong, X., Zheng, Y., Huang, Y., Chen, X., Jing, X. 2010. Synthesis and characterization of multifunctional poly(glycidyl methacrylate) microspheres and their use in cell separation. Analytical Biochemistry, 405(2010), 207-212.
  • [22] Wang, W.C., Zhang, Q., Zhang, B.B., Li, D.N., Dong, X.Q., Zhang, L., Chang, J. 2008. Preparation of monodisperse, superparamagnetic, luminescent, and multifunctional PGMA microspheres with amino-groups. Chinese Science Bulletin, 53(2008), 1165-1170.
  • [23] Özbaş, Z., Gürdag, G. 2015. Swelling kinetics, mechanical properties, and release characteristics of chitosan-based semi-IPN hydrogels. Journal of Applied Polymer Science, 132(2015), DOI: 10.1002/APP.41886, 1-11.
Year 2018, Volume: 22 Issue: 2, 954 - 960, 15.08.2018
https://doi.org/10.19113/sdufbed.84289

Abstract

References

  • [1] Gupta, P., Vermani, K., Garg, S. 2002. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discovery Today, 7(2002), 569-579.
  • [2] Qiu, Y., Park, K. 2001. Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews, 53(2002), 321–339.
  • [3] Peppas, N.A., Bures, P., Leobandung, W., Ichikawa, H. 2000. Hydrogels in pharmaceutical formulations. European Journal of Pharmaceutics and Biopharmaceutics, 50(2000), 27-46.
  • [4] Lin, C.C., Metters, A.T. 2006. Hydrogels in controlled release formulations: Network design and mathematical modeling. Advanced Drug Delivery Reviews, 58(2006), 1379-1408.
  • [5] Lee, W.F., Chiu, R.J. 2002. Investigation of charge effects on drug release behavior for ionic thermosensitive hydrogels. Materials Science and Engineering, C20(2002), 161-166.
  • [6] Zhou, W.Y., Guo, B., Liu, M., Liao, R., Rabie, A.B.M., Jia, D. 2009. Poly(vinyl alcohol)/halloysite nanotubes bionanocomposite films: properties and in vitro osteoblasts and fibroblasts response. Journal of Biomedical Materials Research Part A, 93A(2009), 1574-1587.
  • [7] Hassan, C.M., Peppas N.A. 2000. Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Advances in Polymer Science, 153(2000), 37-65.
  • [8] Li, P., Ruizhen, X., Wang, W., Li, X., Xu, Z., Yeung, K.W.K., Chu, P.K. 2013. Thermosensitive poly(N-isopropylacrylamide-co-glycidyl methacrylate) microgels for controlled drug release. Colloids and Surfaces B: Biointerfaces, 101(2013), 251-255.
  • [9] Nava-Ortiz, C.A.B., Burillo, G., Bucio, E., Alvarez-Lorenzo, C. 2009. Modification of polyethylene films by radiation grafting of glycidyl methacrylate and immobilization of β-cyclodextrin. Radiation Physics and Chemistry, 78(2009), 19-24.
  • [10] Kartal, F., Akkaya, A., Kilinc, A. 2009. Immobilization of porcine pancreatic lipase on glycidyl methacrylate grafted poly vinyl alcohol. Journal of Molecular Catalysis B: Enzymatic, 57(2009), 55-61.
  • [11] Crispim, E.G., Piai, J.F., Fajardo, A.R., Ramos, E.R.F., Nakamura, T.U., Nakamura, C.V., Rubira, A.F., Muniz, E.C. 2012. Hydrogels based on chemically modified poly(vinyl alcohol) (PVA-GMA) and PVA-GMA/chondroitin sulfate: Preparation and characterization. eXPRESS Polymer Letters, 6(2012), 383-395.
  • [12] Ghugare, S.V., Mozetic, P., Paradossi, G. 2009. Temperature-sensitive poly(vinyl alcohol)/ poly(methacrylate-co-N-isopropyl acrylamide) microgels for doxorubicin delivery. Biomacromolecules, 10(2009), 1589-1596.
  • [13] Demir, Ş. 2013. Sıcaklığa duyarlı poli(vinil alkol) esaslı polimerlerin sentez ve karakterizasyonu. İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 75s, İstanbul.
  • [14] Kasgoz, H., Ozbas, Z., Esen, E., Sahin, C.P., Gurdag, G. 2013. Removal of copper(II) ions with a thermoresponsive cellulose-g-poly(N-isopropyl acrylamide) copolymer. Journal of Applied Polymer Science, 130(2013), 4440-4448.
  • [15] Sun, T., Xu, P., Liu, Q., Xue, J., Xie, W. 2003. Graft copolymerization of methacrylic acid onto carboxymethyl chitosan. European Polymer Journal, 39(2003), 189-192.
  • [16] Emik, S. 2014. Preparation and characterization of an IPN type chelating resin containing amino and carboxyl groups for removal of Cu(II) from aqueous solutions, Reactive and Functional Polymers, 75(2014), 63- 74.
  • [17] Mansur, H.S., Sadahira, C.M., Souza, A.N., Mansur, A.A.P. 2008. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Materials Science and Engineering, C28(2008), 539-548.
  • [18] Çelik, S.Ü., Bozkurt, A. 2008. Preparation and proton conductivity of acid-doped 5-aminotetrazole functional poly(glycidyl methacrylate). European Polymer Journal, 44(2008), 213-218.
  • [19] Liu, C., Bai, R., Hong, L. 2006. Diethylenetriamine-grafted poly(glycidyl methacrylate) adsorbent for effective copper ion adsorption. Journal of Colloid and Interface Science, 303(2006), 99-108.
  • [20] Bayramoğlu, G., Arıca, M.Y. 2005. Ethylenediamine grafted poly (glycidylmethacrylate-co-methylmethacrylate) adsorbent for removal of chromate anions. Separation and Purification Technology, 45(2005), 192-199.
  • [21] Dong, X., Zheng, Y., Huang, Y., Chen, X., Jing, X. 2010. Synthesis and characterization of multifunctional poly(glycidyl methacrylate) microspheres and their use in cell separation. Analytical Biochemistry, 405(2010), 207-212.
  • [22] Wang, W.C., Zhang, Q., Zhang, B.B., Li, D.N., Dong, X.Q., Zhang, L., Chang, J. 2008. Preparation of monodisperse, superparamagnetic, luminescent, and multifunctional PGMA microspheres with amino-groups. Chinese Science Bulletin, 53(2008), 1165-1170.
  • [23] Özbaş, Z., Gürdag, G. 2015. Swelling kinetics, mechanical properties, and release characteristics of chitosan-based semi-IPN hydrogels. Journal of Applied Polymer Science, 132(2015), DOI: 10.1002/APP.41886, 1-11.
There are 23 citations in total.

Details

Journal Section Articles
Authors

Zehra Özbaş

Publication Date August 15, 2018
Published in Issue Year 2018 Volume: 22 Issue: 2

Cite

APA Özbaş, Z. (2018). Amin Grupları ile Fonksiyonelleştirilmiş Poli(vinil alkol) Aşı Kopolimerinin İlaç Salım Sistemlerinde Kullanımının İncelenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 954-960. https://doi.org/10.19113/sdufbed.84289
AMA Özbaş Z. Amin Grupları ile Fonksiyonelleştirilmiş Poli(vinil alkol) Aşı Kopolimerinin İlaç Salım Sistemlerinde Kullanımının İncelenmesi. J. Nat. Appl. Sci. August 2018;22(2):954-960. doi:10.19113/sdufbed.84289
Chicago Özbaş, Zehra. “Amin Grupları Ile Fonksiyonelleştirilmiş Poli(vinil Alkol) Aşı Kopolimerinin İlaç Salım Sistemlerinde Kullanımının İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, no. 2 (August 2018): 954-60. https://doi.org/10.19113/sdufbed.84289.
EndNote Özbaş Z (August 1, 2018) Amin Grupları ile Fonksiyonelleştirilmiş Poli(vinil alkol) Aşı Kopolimerinin İlaç Salım Sistemlerinde Kullanımının İncelenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 2 954–960.
IEEE Z. Özbaş, “Amin Grupları ile Fonksiyonelleştirilmiş Poli(vinil alkol) Aşı Kopolimerinin İlaç Salım Sistemlerinde Kullanımının İncelenmesi”, J. Nat. Appl. Sci., vol. 22, no. 2, pp. 954–960, 2018, doi: 10.19113/sdufbed.84289.
ISNAD Özbaş, Zehra. “Amin Grupları Ile Fonksiyonelleştirilmiş Poli(vinil Alkol) Aşı Kopolimerinin İlaç Salım Sistemlerinde Kullanımının İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/2 (August 2018), 954-960. https://doi.org/10.19113/sdufbed.84289.
JAMA Özbaş Z. Amin Grupları ile Fonksiyonelleştirilmiş Poli(vinil alkol) Aşı Kopolimerinin İlaç Salım Sistemlerinde Kullanımının İncelenmesi. J. Nat. Appl. Sci. 2018;22:954–960.
MLA Özbaş, Zehra. “Amin Grupları Ile Fonksiyonelleştirilmiş Poli(vinil Alkol) Aşı Kopolimerinin İlaç Salım Sistemlerinde Kullanımının İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 22, no. 2, 2018, pp. 954-60, doi:10.19113/sdufbed.84289.
Vancouver Özbaş Z. Amin Grupları ile Fonksiyonelleştirilmiş Poli(vinil alkol) Aşı Kopolimerinin İlaç Salım Sistemlerinde Kullanımının İncelenmesi. J. Nat. Appl. Sci. 2018;22(2):954-60.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.