Research Article
BibTex RIS Cite

Comparison of the Estimation Methods for the Parameters of Exponentiated Reduced Kies Distribution

Year 2018, Volume: 22 Issue: 3, 1209 - 1216, 20.09.2018
https://doi.org/10.19113/sdufenbed.498870

Abstract

In this paper, we consider the estimation for the
parameters of exponentiated reduced Kies (ERK) distribution using maximum
likelihood (ML), least squares (LS), weighted least squares (WLS), Cramér-von
Mises (CM), Anderson Darling (AD) and right-tail Anderson Darling (RAD)
methods. The performances of the estimators are compared via Monte-Carlo
simulation study for different parameter settings and different sample sizes.
Finally, a real data set is analyzed for the implementation of the proposed
methods.

References

  • [1] Kantar, Y. M., Şenoğlu, B. 2008. A comparative study for the location and scale parameters of the Weibull distribution with given shape parameter. Computer and Geosciences, 34, 1900-1909.
  • [2] Akgül, F. G., Şenoğlu, B., Arslan, T. 2016. An alternative distribution to Weibull for modeling the wind speed data: Inverse Weibull distribution. Energy Conversion and Management, 114, 234-240.
  • [3] Mudholkar, G. S., Srivastava, D. K. 1993. Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Transactions on Reliability, 42, 299-302.
  • [4] Mudholkar, G. S., Kollia, G. D. 1994. Generalized Weibull family: a structural analysis. Communications in Statistics – Theory and Methods, 23(4), 1149-71.
  • [5] Xie, M., Tang, Y., Goh, T. N. 2002. A modified Weibull extension with bathtub-shaped failure rate function. Reliability Engineering and System Safety, 76, 279-285.
  • [6] Lee, C., Famoye, F., Olumolade, O. 2007. Beta-Weibull distribution: Some properties and applications to censored data. Journal of Modern Applied Statistical Methods, 6(1), 173-186.
  • [7] Cordeiro, G. M., Gomes, A. E., Queiroz da-Silva, C., Ortega, E. M. M. 2013. The beta exponentiated Weibull distribution. Journal of Statistical Computation and Simulation, 83(1), 114-138.
  • [8] Kies, J. A. 1958. The strength of glass performance. Naval Research Lab Report No. 5093, Washington, D.C.
  • [9] Kumar, C. S., Dharmaja, S. H. S. 2014. On some properties of Kies distribution. Metron, 72, 97-122.
  • [10] Kumar, C. S., Dharmaja, S. H. S. 2013. On reduced Kies distribution. In: Kumar, C.S., Chacko, M., Sathar, E.I.A., eds. Collection of Recent Statistical Methods and Applications, (pp. 111–123). Trivandrum: Department of Statistics, University of Kerala Publishers.
  • [11] Kumar, C. S., Dharmaja, S. H. S. 2017. The exponentiated reduced Kies distribution: Properties and applications. Communications in Statistics – Theory and Methods, 46(17), 8778-90.
  • [12] Wolfowitz, J. 1953. Estimation by the minimum distance methods. Ann. Ins. Stat. Math. 5, 9-23.
  • [13] Wolfowitz, J. 1957. The minimum distance methods. Ann. Math. Stat. 28, 75-88.
  • [14] Luceño, A. 2008. Maximum likelihood vs. maximum goodness of fit estimation of the three-parameter Weibull distribution. Journal of Statistical Computation and Simulation, 78(10), 941-949.
  • [15] Santo, A. P. J. E., Mazucheli, J. 2015. Comparison of estimation methods for the Marshall-Olkin extended Lindley distribution. Journal of Statistical Computation and Simulation, 85(17), 3437-3450.
  • [16] Mazucheli, J., Ghitany, M. E., Louzada, F. 2017. Comparisons of ten estimation methods for the parameters of Marshall-Olkin extended exponential distribution. Communications in Statistics – Simulation and Computation, 46(7), 5627-5645.
  • [17] Akgül, F. G., Şenoğlu, B. 2018. Comparison of Estimation Methods for Inverse Weibull Distribution. 1-22. Tez, M., von Rosen, D. 2018. Trends and Perspectives in Linear Statistical Inference, Springer.
  • [18] Wingo, D. R. 1983. Maximum likelihood methods for fitting the Burr XII distribution to life test data. Biom J., 25, 77-84.

Exponentiated Reduced Kies Dağılımının Parametreleri için Tahmin Yöntemlerinin Karşılaştırılması

Year 2018, Volume: 22 Issue: 3, 1209 - 1216, 20.09.2018
https://doi.org/10.19113/sdufenbed.498870

Abstract

Bu
makalede, exponentiated reduced Kies (ERK) dağılımının parametreleri en çok
olabilirlik, en küçük kareler, ağırlıklandırılmış en küçük karaler, Cramér-von
Mises, Anderson Darling ve sağ-kuyruklu Anderson Darling yöntemleri
kullanılarak tahmin edilmiştir. Tahmin edicilerin performansları farklı
parametre değerleri ve farklı örneklemler boyutları için Monte-Carlo simülasyon
çalışması ile karşılaştırılmıştır. Son olarak, önerilen yöntemlerin uygulanması
için gerçek bir veri seti analiz edilmiştir.

References

  • [1] Kantar, Y. M., Şenoğlu, B. 2008. A comparative study for the location and scale parameters of the Weibull distribution with given shape parameter. Computer and Geosciences, 34, 1900-1909.
  • [2] Akgül, F. G., Şenoğlu, B., Arslan, T. 2016. An alternative distribution to Weibull for modeling the wind speed data: Inverse Weibull distribution. Energy Conversion and Management, 114, 234-240.
  • [3] Mudholkar, G. S., Srivastava, D. K. 1993. Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Transactions on Reliability, 42, 299-302.
  • [4] Mudholkar, G. S., Kollia, G. D. 1994. Generalized Weibull family: a structural analysis. Communications in Statistics – Theory and Methods, 23(4), 1149-71.
  • [5] Xie, M., Tang, Y., Goh, T. N. 2002. A modified Weibull extension with bathtub-shaped failure rate function. Reliability Engineering and System Safety, 76, 279-285.
  • [6] Lee, C., Famoye, F., Olumolade, O. 2007. Beta-Weibull distribution: Some properties and applications to censored data. Journal of Modern Applied Statistical Methods, 6(1), 173-186.
  • [7] Cordeiro, G. M., Gomes, A. E., Queiroz da-Silva, C., Ortega, E. M. M. 2013. The beta exponentiated Weibull distribution. Journal of Statistical Computation and Simulation, 83(1), 114-138.
  • [8] Kies, J. A. 1958. The strength of glass performance. Naval Research Lab Report No. 5093, Washington, D.C.
  • [9] Kumar, C. S., Dharmaja, S. H. S. 2014. On some properties of Kies distribution. Metron, 72, 97-122.
  • [10] Kumar, C. S., Dharmaja, S. H. S. 2013. On reduced Kies distribution. In: Kumar, C.S., Chacko, M., Sathar, E.I.A., eds. Collection of Recent Statistical Methods and Applications, (pp. 111–123). Trivandrum: Department of Statistics, University of Kerala Publishers.
  • [11] Kumar, C. S., Dharmaja, S. H. S. 2017. The exponentiated reduced Kies distribution: Properties and applications. Communications in Statistics – Theory and Methods, 46(17), 8778-90.
  • [12] Wolfowitz, J. 1953. Estimation by the minimum distance methods. Ann. Ins. Stat. Math. 5, 9-23.
  • [13] Wolfowitz, J. 1957. The minimum distance methods. Ann. Math. Stat. 28, 75-88.
  • [14] Luceño, A. 2008. Maximum likelihood vs. maximum goodness of fit estimation of the three-parameter Weibull distribution. Journal of Statistical Computation and Simulation, 78(10), 941-949.
  • [15] Santo, A. P. J. E., Mazucheli, J. 2015. Comparison of estimation methods for the Marshall-Olkin extended Lindley distribution. Journal of Statistical Computation and Simulation, 85(17), 3437-3450.
  • [16] Mazucheli, J., Ghitany, M. E., Louzada, F. 2017. Comparisons of ten estimation methods for the parameters of Marshall-Olkin extended exponential distribution. Communications in Statistics – Simulation and Computation, 46(7), 5627-5645.
  • [17] Akgül, F. G., Şenoğlu, B. 2018. Comparison of Estimation Methods for Inverse Weibull Distribution. 1-22. Tez, M., von Rosen, D. 2018. Trends and Perspectives in Linear Statistical Inference, Springer.
  • [18] Wingo, D. R. 1983. Maximum likelihood methods for fitting the Burr XII distribution to life test data. Biom J., 25, 77-84.
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Fatma Gül Akgül

Publication Date September 20, 2018
Published in Issue Year 2018 Volume: 22 Issue: 3

Cite

APA Akgül, F. G. (2018). Comparison of the Estimation Methods for the Parameters of Exponentiated Reduced Kies Distribution. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(3), 1209-1216. https://doi.org/10.19113/sdufenbed.498870
AMA Akgül FG. Comparison of the Estimation Methods for the Parameters of Exponentiated Reduced Kies Distribution. J. Nat. Appl. Sci. September 2018;22(3):1209-1216. doi:10.19113/sdufenbed.498870
Chicago Akgül, Fatma Gül. “Comparison of the Estimation Methods for the Parameters of Exponentiated Reduced Kies Distribution”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, no. 3 (September 2018): 1209-16. https://doi.org/10.19113/sdufenbed.498870.
EndNote Akgül FG (September 1, 2018) Comparison of the Estimation Methods for the Parameters of Exponentiated Reduced Kies Distribution. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 3 1209–1216.
IEEE F. G. Akgül, “Comparison of the Estimation Methods for the Parameters of Exponentiated Reduced Kies Distribution”, J. Nat. Appl. Sci., vol. 22, no. 3, pp. 1209–1216, 2018, doi: 10.19113/sdufenbed.498870.
ISNAD Akgül, Fatma Gül. “Comparison of the Estimation Methods for the Parameters of Exponentiated Reduced Kies Distribution”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/3 (September 2018), 1209-1216. https://doi.org/10.19113/sdufenbed.498870.
JAMA Akgül FG. Comparison of the Estimation Methods for the Parameters of Exponentiated Reduced Kies Distribution. J. Nat. Appl. Sci. 2018;22:1209–1216.
MLA Akgül, Fatma Gül. “Comparison of the Estimation Methods for the Parameters of Exponentiated Reduced Kies Distribution”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 22, no. 3, 2018, pp. 1209-16, doi:10.19113/sdufenbed.498870.
Vancouver Akgül FG. Comparison of the Estimation Methods for the Parameters of Exponentiated Reduced Kies Distribution. J. Nat. Appl. Sci. 2018;22(3):1209-16.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.