In this study, a Chebyshev spectral collocation method (CSCM) approximation is proposed for solving the full magnetohydrodynamics (MHD) equations coupled with energy equation. The MHD flow is two-dimensional, unsteady, laminar and incompressible, and the heat transfer is considered using the Boussinesq approximation for thermal coupling. The flow takes place in a square cavity which is subjected to a vertically applied external magnetic field, and the presence of the induced magnetic field is also taken into account due to the electrical conductivity of the fluid. The governing equations given in terms of stream function, vorticity, temperature, magnetic stream function, and current density, are solved iteratively using CSCM for the spatial discretisation, and an unconditionally stable backward difference scheme for the time integration. The induced magnetic field is obtained by means of its relation to the magnetic stream function. The behaviours of the flow and the heat transfer are investigated for varying values of Reynolds ($Re$), magnetic Reynolds ($Rem$), Rayleigh ($Ra$) and Hartmann ($Ha$) numbers.
Journal Section | Articles |
---|---|
Authors | |
Publication Date | October 5, 2018 |
Published in Issue | Year 2018 Volume: 22 Issue: Special |
e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688
All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.