BibTex RIS Cite

Chebyshev Spectral Collocation Method Approximation to Thermally Coupled MHD Equations

Year 2018, Volume: 22 Issue: Special, 355 - 366, 05.10.2018

Abstract

In this study, a Chebyshev spectral collocation method (CSCM) approximation is proposed for solving the full magnetohydrodynamics (MHD) equations coupled with energy equation. The MHD flow is two-dimensional, unsteady, laminar and incompressible, and the heat transfer is considered using the Boussinesq approximation for thermal coupling. The flow takes place in a square cavity which is subjected to a vertically applied external magnetic field, and the presence of the induced magnetic field is also taken into account due to the electrical conductivity of the fluid. The governing equations given in terms of stream function, vorticity, temperature, magnetic stream function, and current density, are solved iteratively using CSCM for the spatial discretisation, and an unconditionally stable backward difference scheme for the time integration. The induced magnetic field is obtained by means of its relation to the magnetic stream function. The behaviours of the flow and the heat transfer are investigated for varying values of Reynolds ($Re$), magnetic Reynolds ($Rem$), Rayleigh ($Ra$) and Hartmann ($Ha$) numbers.

References

  • [1] Ece, M. C., Büyük, E. 2007. FEM solution of natural convection flow in square enclosures under magnetic field., Meccanica, 42, 435-449.
  • [2] Colaço, M. J., Dulikravich, G. S., Orlande, H.R.B. 2009. Magnetohydrodynamic simulations using radial basis functions. International Journal of Heat and Mass Transfer, 52, 5932-5939.
  • [3] Mramor, K., Vertnik, R., Sarler, B. 2013. Simulation of Natural Convection Influenced by Magnetic Field with Explicit Local Radial Basis Function Collocation Method. CMES: Computer Modeling in Engineering & Sciences, 92, 327-352.
  • [4] Oztop, H. F., Al-Salem, K., Pop, I. 2011. MHD Mixed Convection in a Lid-driven Cavity with Corner Heater. International Journal of Heat and Mass Transfer, 54, 3494-3504.
  • [5] Al-Salem, K., Öztop, H. F., Pop, I., Varol, Y. 2011. Effects of moving lid direction on MHD mixed convection in a linearly heated cavity. International Journal of Heat and Mass Transfer, 55, 1103-1112.
  • [6] Türk, Ö., Tezer-Sezgin, M. 2013. Natural convection flow under a magnetic field in an inclined square enclosure differentialy heated on adjacent walls. International Journal of Numerical Methods for Heat & Fluid Flow, 23, 844-866.
  • [7] Sarris, I. E., Zikos, G. K., Grecos, A. P., Vlachos, N. S. 2006. On the Limits of Validity of the Low Magnetic Reynolds Number Approximation in MHD Natural Convection Heat Transfer. Numerical Heat Transfer, Part B: Fundamentals, 50, 157-180.
  • [8] Şentürk, K., Tessarotto, M., Aslan, N. 2009. Numerical solutions of liquid metal flows by incompressible magneto-hydrodynamics with heat transfer. International Journal for Numerical Methods in Fluids, 60(2009), 1200-1221.
  • [9] Bozkaya, N., Tezer-Sezgin, M. 2011. The DRBEM solution of incompressible MHD flow equations. International Journal for Numerical Methods in Fluids, 67, 1264-1282.
  • [10] Codina, R., Hernández, N. 2011. Approximation of the Thermally Coupled MHD Problem Using a Stabilized Finite Element Method. Journal of Computational Physics, 230, 1281-1303.
  • [11] Pekmen, B., Tezer-Sezgin, M. 2015. DRBEM Solution of MHD Flow with Magnetic Induction and Heat Transfer. CMES: Computer Modeling in Engineering & Sciences, 105, 183-207.
  • [12] Sivakumar, R., Vimala S., Sekhar, T. V. S. 2015. Influence of Induced Magnetic Field on Thermal MHD Flow. Numerical Heat Transfer, Part A: Applications, 68, 797-811.
  • [13] Selimli, S., Recebli, Z. 2018. Impact of electrical and magnetic field on cooling process of liquid metal duct magnetohydrodynamic flow. Thermal Science, 22, 263-271.
  • [14] Ha, M. Y., Kim, I. K., Yoon, H. S., Yoon, K. S., Lee, J. R., Balachandar, S., Chun, H. H. 2002. Twodimensional and unsteady natural convection in a horizontal enclosure with a square body. Numerical Heat Transfer, Part A: Applications, 41, 183-210.
  • [15] Davidson, P. A. 2001. An Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge.
  • [16] Yu, P. X., Tian, Z. F., Ying A. Y., Abdou, M. A. 2017. Stream function-velocity-magnetic induction compact difference method for the 2D steady incompressible full magnetohydrodynamic equations. Computer Physics Communications, 219, 45-69.
  • [17] Hu, K., Ma, Y., Xu, J. 2017. Stable finite element methods preserving ÑB=0 exactly for MHD models. Numerische Mathematik, 135, 371-396.
  • [18] Brackbill, J. U., Barnes, D. C. 1980. The Effect of Nonzero ÑB on the numerical solution of the magnetohydrodynamic equations . Journal of Computational Physics, 35, 426-430.
  • [19] Salah, N. B., Soulaimani, A., Habashi, A. 2001. A finite element method for magnetohydrodynamics. Computer Methods in Applied Mechanics and Engineering, 190, 5867-5892.
  • [20] Gottlieb, D., Orszag, S. A. 1977. Numerical Analysis of Spectral Methods: Theory and Applications. SIAM, Philadelphia.
  • [21] Boyd, J. P. 2000. Chebyshev and Fourier Spectral Methods. Dover, New York.
  • [22] Trefethen, L. N. 2000. Spectral Methods in Matlab. SIAM, Philadelphia.
  • [23] Botella, O., Peyret, R. 1998. Computing singular solutions of the Navier-Stokes equations with the Chebyshev-collocation method. International Journal for Numerical Methods in Fluids, 36, 125-163.
  • [24] Botella, O., Peyret, R. 2001. Benchmark Spectral Results on the Lid-Driven Cavity Flow. Computers & Fluids, 27(4), 421-433.
  • [25] Peyret, R. 2002. Spectral Methods for Incompressible Viscous Flow. Springer-Verlag, New York.
  • [26] Heinrichs, W., Kattelans, T. 2008. A direct solver for the least-squares spectral collocation system on rectangular elements for the incompressible Navier-Stokes equations . Journal of Computational Physics, 227(9), 4776-4796.
  • [27] Auteri, F., Quartapelle, Vigevano, L. 2002. Accurate Spectral Solution of the Singular Driven Cavity Problem. Journal of Computational Physics, 180, 597-615.
Year 2018, Volume: 22 Issue: Special, 355 - 366, 05.10.2018

Abstract

References

  • [1] Ece, M. C., Büyük, E. 2007. FEM solution of natural convection flow in square enclosures under magnetic field., Meccanica, 42, 435-449.
  • [2] Colaço, M. J., Dulikravich, G. S., Orlande, H.R.B. 2009. Magnetohydrodynamic simulations using radial basis functions. International Journal of Heat and Mass Transfer, 52, 5932-5939.
  • [3] Mramor, K., Vertnik, R., Sarler, B. 2013. Simulation of Natural Convection Influenced by Magnetic Field with Explicit Local Radial Basis Function Collocation Method. CMES: Computer Modeling in Engineering & Sciences, 92, 327-352.
  • [4] Oztop, H. F., Al-Salem, K., Pop, I. 2011. MHD Mixed Convection in a Lid-driven Cavity with Corner Heater. International Journal of Heat and Mass Transfer, 54, 3494-3504.
  • [5] Al-Salem, K., Öztop, H. F., Pop, I., Varol, Y. 2011. Effects of moving lid direction on MHD mixed convection in a linearly heated cavity. International Journal of Heat and Mass Transfer, 55, 1103-1112.
  • [6] Türk, Ö., Tezer-Sezgin, M. 2013. Natural convection flow under a magnetic field in an inclined square enclosure differentialy heated on adjacent walls. International Journal of Numerical Methods for Heat & Fluid Flow, 23, 844-866.
  • [7] Sarris, I. E., Zikos, G. K., Grecos, A. P., Vlachos, N. S. 2006. On the Limits of Validity of the Low Magnetic Reynolds Number Approximation in MHD Natural Convection Heat Transfer. Numerical Heat Transfer, Part B: Fundamentals, 50, 157-180.
  • [8] Şentürk, K., Tessarotto, M., Aslan, N. 2009. Numerical solutions of liquid metal flows by incompressible magneto-hydrodynamics with heat transfer. International Journal for Numerical Methods in Fluids, 60(2009), 1200-1221.
  • [9] Bozkaya, N., Tezer-Sezgin, M. 2011. The DRBEM solution of incompressible MHD flow equations. International Journal for Numerical Methods in Fluids, 67, 1264-1282.
  • [10] Codina, R., Hernández, N. 2011. Approximation of the Thermally Coupled MHD Problem Using a Stabilized Finite Element Method. Journal of Computational Physics, 230, 1281-1303.
  • [11] Pekmen, B., Tezer-Sezgin, M. 2015. DRBEM Solution of MHD Flow with Magnetic Induction and Heat Transfer. CMES: Computer Modeling in Engineering & Sciences, 105, 183-207.
  • [12] Sivakumar, R., Vimala S., Sekhar, T. V. S. 2015. Influence of Induced Magnetic Field on Thermal MHD Flow. Numerical Heat Transfer, Part A: Applications, 68, 797-811.
  • [13] Selimli, S., Recebli, Z. 2018. Impact of electrical and magnetic field on cooling process of liquid metal duct magnetohydrodynamic flow. Thermal Science, 22, 263-271.
  • [14] Ha, M. Y., Kim, I. K., Yoon, H. S., Yoon, K. S., Lee, J. R., Balachandar, S., Chun, H. H. 2002. Twodimensional and unsteady natural convection in a horizontal enclosure with a square body. Numerical Heat Transfer, Part A: Applications, 41, 183-210.
  • [15] Davidson, P. A. 2001. An Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge.
  • [16] Yu, P. X., Tian, Z. F., Ying A. Y., Abdou, M. A. 2017. Stream function-velocity-magnetic induction compact difference method for the 2D steady incompressible full magnetohydrodynamic equations. Computer Physics Communications, 219, 45-69.
  • [17] Hu, K., Ma, Y., Xu, J. 2017. Stable finite element methods preserving ÑB=0 exactly for MHD models. Numerische Mathematik, 135, 371-396.
  • [18] Brackbill, J. U., Barnes, D. C. 1980. The Effect of Nonzero ÑB on the numerical solution of the magnetohydrodynamic equations . Journal of Computational Physics, 35, 426-430.
  • [19] Salah, N. B., Soulaimani, A., Habashi, A. 2001. A finite element method for magnetohydrodynamics. Computer Methods in Applied Mechanics and Engineering, 190, 5867-5892.
  • [20] Gottlieb, D., Orszag, S. A. 1977. Numerical Analysis of Spectral Methods: Theory and Applications. SIAM, Philadelphia.
  • [21] Boyd, J. P. 2000. Chebyshev and Fourier Spectral Methods. Dover, New York.
  • [22] Trefethen, L. N. 2000. Spectral Methods in Matlab. SIAM, Philadelphia.
  • [23] Botella, O., Peyret, R. 1998. Computing singular solutions of the Navier-Stokes equations with the Chebyshev-collocation method. International Journal for Numerical Methods in Fluids, 36, 125-163.
  • [24] Botella, O., Peyret, R. 2001. Benchmark Spectral Results on the Lid-Driven Cavity Flow. Computers & Fluids, 27(4), 421-433.
  • [25] Peyret, R. 2002. Spectral Methods for Incompressible Viscous Flow. Springer-Verlag, New York.
  • [26] Heinrichs, W., Kattelans, T. 2008. A direct solver for the least-squares spectral collocation system on rectangular elements for the incompressible Navier-Stokes equations . Journal of Computational Physics, 227(9), 4776-4796.
  • [27] Auteri, F., Quartapelle, Vigevano, L. 2002. Accurate Spectral Solution of the Singular Driven Cavity Problem. Journal of Computational Physics, 180, 597-615.
There are 27 citations in total.

Details

Journal Section Articles
Authors

Önder Türk This is me

Publication Date October 5, 2018
Published in Issue Year 2018 Volume: 22 Issue: Special

Cite

APA Türk, Ö. (2018). Chebyshev Spectral Collocation Method Approximation to Thermally Coupled MHD Equations. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22, 355-366.
AMA Türk Ö. Chebyshev Spectral Collocation Method Approximation to Thermally Coupled MHD Equations. SDÜ Fen Bil Enst Der. October 2018;22:355-366.
Chicago Türk, Önder. “Chebyshev Spectral Collocation Method Approximation to Thermally Coupled MHD Equations”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, October (October 2018): 355-66.
EndNote Türk Ö (October 1, 2018) Chebyshev Spectral Collocation Method Approximation to Thermally Coupled MHD Equations. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 355–366.
IEEE Ö. Türk, “Chebyshev Spectral Collocation Method Approximation to Thermally Coupled MHD Equations”, SDÜ Fen Bil Enst Der, vol. 22, pp. 355–366, 2018.
ISNAD Türk, Önder. “Chebyshev Spectral Collocation Method Approximation to Thermally Coupled MHD Equations”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 (October 2018), 355-366.
JAMA Türk Ö. Chebyshev Spectral Collocation Method Approximation to Thermally Coupled MHD Equations. SDÜ Fen Bil Enst Der. 2018;22:355–366.
MLA Türk, Önder. “Chebyshev Spectral Collocation Method Approximation to Thermally Coupled MHD Equations”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 22, 2018, pp. 355-66.
Vancouver Türk Ö. Chebyshev Spectral Collocation Method Approximation to Thermally Coupled MHD Equations. SDÜ Fen Bil Enst Der. 2018;22:355-66.

e-ISSN: 1308-6529