Research Article
BibTex RIS Cite

On the Hyperharmonic Function

Year 2019, Volume: 23 Issue: Special [en], 187 - 193, 01.03.2019
https://doi.org/10.19113/sdufenbed.453758

Abstract

In this paper we investigate some properties of Hyperharmonic function defined

$H_{z}^{(w)}=\frac{\left( z\right) _{w}}{z\Gamma\left( w\right) }\left(
\Psi\left( z+w\right) -\Psi\left( w\right) \right)$

where $\text{ \ \ }w\text{, }z+w\in\mathbb{C}\backslash\left( \mathbb{Z}^{-}\cup\left\{ 0\right\} \right).$

Using this definition we introduce harmonic numbers with complex index and
we give some series of these numbers. Also formulas for the calculation of
harmonic numbers with rational index are obtained. For the simplicity of
differentiation we reorganized representation of $H_{z}^{(w)}$. With the
help of this new form we get higher derivatives of Hyperharmonic function
more easily. Besides these, owing to the fact that the Hyperharmonic
function is composed of some important functions, we interested in properties
and connections of it. We get connections between Hyperharmonic function and
trigonometric functions. Infinite product representation, integral
representation and differentiation identities of this function also obtained.

References

  • [1] Abramowitz, M., Stegun, I. 1972. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. Dover, New York, 1046s.
  • [2] Andrews, G. E., Askey, R., Roy, R. 2000. Special Functions, Cambridge University Press, 682s.
  • [3] Bak, J., Newman, D. J. 1997. Complex Analysis, Springer, 328s.
  • [4] Conway, J. H., Guy, R. K. 1996. The Book of Numbers, New York, Springer-Verlag, 310s.
  • [5] Dil, A., Mez˝o, I., Cenkci, M. 2017. Evaluation of Euler-like sums via Hurwitz zeta values. Turk. J. Math., 41(6), 1640-1655.
  • [6] Dil A, Boyadzhiev KN. 2015. Euler sums of hyperharmonic numbers. J. Number Theory, 147: 490-498.
  • [7] Gaboury S. 2014. Further Expansion and Summation Formulas Involving the Hyperharmonic Function. Commun. Korean Math. Soc., 29 (2): 269-83.
  • [8] Gradshteyn, I. S., Ryzhik, I. M. 2007. Table of Integrals, Series, and Products, Elsevier Academic Press, USA, 1163s.
  • [9] Medina, L. A., Moll, V. H. 2009. The Integrals in Gradshteyn and Ryzhik. Part 10: The Digamma Function. SCIENTIA, Series A: Mathematical Sciences, Vol. 17, 45–66.
  • [10] Mez˝o, I. 2009. Analytic Extension of Hyperharmonic Numbers. Online Journal of Analytic Combinatorics, Issue 4 (2009).
  • [11] Mez˝o, I., Dil, A. 2010. Hyperharmonic Series Involving Hurwitz Zeta Function. J. Number Theory, 130, 2: 360-369.
  • [12] Milne-Thomson, L. M. 1965. The Calculus of Finite Differences. MacMillan & Co., 558s.
  • [13] Rainville, E. D. 1960. Special Functions. MacMillan, New York, 365s.
  • [14] Sofo, A., Srivastava, H. M. 2015. A Family of Shifted Harmonic Sums. Ramanujan J. 37, 89-108.
  • [15] Sofo, A. 2014. Shifted Harmonic Sums of Order Two. Commun. Korean Math. Soc. 29 (2), 239-255.
  • [16] Wang, Z. X., Guo, D. R. 1989. Special Functions, World Scientific, 720s.
  • [17] Xu, C. 2018. Euler Sums of Generalized Hyperharmonic Numbers. J. Korean Math. Soc. 55, No. 5, 1207-1220.
  • [18] Xu, C. 2018. Computation and Theory of Euler Sums of Generalized Hyperharmonic Numbers. C. R. Acad. Sci. Paris, Ser. I 356, 243-252.
  • [19] Xu, C. 2017. Identities for the Shifted Harmonic Numbers and Binomial Coefficients. Filomat 31:19, 6071-6086.

Hiperharmonik Fonksiyon Üzerine

Year 2019, Volume: 23 Issue: Special [en], 187 - 193, 01.03.2019
https://doi.org/10.19113/sdufenbed.453758

Abstract






 Özet: Bu çalışmada


$H_{z}^{(w)}=\frac{\left( z\right) _{w}}{z\Gamma\left( w\right) }\left(
\Psi\left( z+w\right) -\Psi\left( w\right) \right)$

where $\text{ \ \ }w\text{, }z+w\in\mathbb{C}\backslash\left( \mathbb{Z}^{-}\cup\left\{ 0\right\} \right).$

eşitliği ile tanımlanan Hiperharmonik fonksiyonun bazı özellikleri araştırılmıştır. Bu tanımdan faydalanarak karmaşık indeksli harmonik sayılar tanıtılmış ve bu sayıların bazı serileri verilmiştir. Ayrıca rasyonel indeksli harmonik sayıların hesaplanması için formüller elde edilmiştir. $H_{z}^{(w)}$ fonksiyonunun türevlerinin daha kolay hesaplanabilmesi için, mevcut gösterim yeniden düzenlenmi¸stir. Bu yeni gösterim yardımıyla Hiperharmonik fonksiyonun yüksek mertebeli türevleri daha kolay hesaplanabilmektedir. Bunların yanı sıra, Hiperharmonik fonksiyonun özel bazı fonksiyonların birleşimi biçiminde ifade edilebildiği gerçeğinden hareketle, bazı özellikleri ve bağlantıları çalışılmıştır. Hiperharmonik fonksiyonun trigonometrik fonksiyonlarla ilişkileri elde edilmiş, sonsuz çarpım gösterimi, integral gösterimi ve bazı türevsel özdeşlikleri verilmiştir.


References

  • [1] Abramowitz, M., Stegun, I. 1972. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. Dover, New York, 1046s.
  • [2] Andrews, G. E., Askey, R., Roy, R. 2000. Special Functions, Cambridge University Press, 682s.
  • [3] Bak, J., Newman, D. J. 1997. Complex Analysis, Springer, 328s.
  • [4] Conway, J. H., Guy, R. K. 1996. The Book of Numbers, New York, Springer-Verlag, 310s.
  • [5] Dil, A., Mez˝o, I., Cenkci, M. 2017. Evaluation of Euler-like sums via Hurwitz zeta values. Turk. J. Math., 41(6), 1640-1655.
  • [6] Dil A, Boyadzhiev KN. 2015. Euler sums of hyperharmonic numbers. J. Number Theory, 147: 490-498.
  • [7] Gaboury S. 2014. Further Expansion and Summation Formulas Involving the Hyperharmonic Function. Commun. Korean Math. Soc., 29 (2): 269-83.
  • [8] Gradshteyn, I. S., Ryzhik, I. M. 2007. Table of Integrals, Series, and Products, Elsevier Academic Press, USA, 1163s.
  • [9] Medina, L. A., Moll, V. H. 2009. The Integrals in Gradshteyn and Ryzhik. Part 10: The Digamma Function. SCIENTIA, Series A: Mathematical Sciences, Vol. 17, 45–66.
  • [10] Mez˝o, I. 2009. Analytic Extension of Hyperharmonic Numbers. Online Journal of Analytic Combinatorics, Issue 4 (2009).
  • [11] Mez˝o, I., Dil, A. 2010. Hyperharmonic Series Involving Hurwitz Zeta Function. J. Number Theory, 130, 2: 360-369.
  • [12] Milne-Thomson, L. M. 1965. The Calculus of Finite Differences. MacMillan & Co., 558s.
  • [13] Rainville, E. D. 1960. Special Functions. MacMillan, New York, 365s.
  • [14] Sofo, A., Srivastava, H. M. 2015. A Family of Shifted Harmonic Sums. Ramanujan J. 37, 89-108.
  • [15] Sofo, A. 2014. Shifted Harmonic Sums of Order Two. Commun. Korean Math. Soc. 29 (2), 239-255.
  • [16] Wang, Z. X., Guo, D. R. 1989. Special Functions, World Scientific, 720s.
  • [17] Xu, C. 2018. Euler Sums of Generalized Hyperharmonic Numbers. J. Korean Math. Soc. 55, No. 5, 1207-1220.
  • [18] Xu, C. 2018. Computation and Theory of Euler Sums of Generalized Hyperharmonic Numbers. C. R. Acad. Sci. Paris, Ser. I 356, 243-252.
  • [19] Xu, C. 2017. Identities for the Shifted Harmonic Numbers and Binomial Coefficients. Filomat 31:19, 6071-6086.
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ayhan Dil 0000-0003-1273-6704

Publication Date March 1, 2019
Published in Issue Year 2019 Volume: 23 Issue: Special [en]

Cite

APA Dil, A. (2019). On the Hyperharmonic Function. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23, 187-193. https://doi.org/10.19113/sdufenbed.453758
AMA Dil A. On the Hyperharmonic Function. J. Nat. Appl. Sci. March 2019;23:187-193. doi:10.19113/sdufenbed.453758
Chicago Dil, Ayhan. “On the Hyperharmonic Function”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23, March (March 2019): 187-93. https://doi.org/10.19113/sdufenbed.453758.
EndNote Dil A (March 1, 2019) On the Hyperharmonic Function. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 187–193.
IEEE A. Dil, “On the Hyperharmonic Function”, J. Nat. Appl. Sci., vol. 23, pp. 187–193, 2019, doi: 10.19113/sdufenbed.453758.
ISNAD Dil, Ayhan. “On the Hyperharmonic Function”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 (March 2019), 187-193. https://doi.org/10.19113/sdufenbed.453758.
JAMA Dil A. On the Hyperharmonic Function. J. Nat. Appl. Sci. 2019;23:187–193.
MLA Dil, Ayhan. “On the Hyperharmonic Function”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 23, 2019, pp. 187-93, doi:10.19113/sdufenbed.453758.
Vancouver Dil A. On the Hyperharmonic Function. J. Nat. Appl. Sci. 2019;23:187-93.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.