Research Article
BibTex RIS Cite

Tekstil Endüstrisinde Karbon Ayak İzinin Belirlenmesi

Year 2021, Volume: 25 Issue: 1, 28 - 35, 20.04.2021
https://doi.org/10.19113/sdufenbed.670336

Abstract

Bu çalışmada, bir tekstil fabrikasının konfeksiyon, kumaş boyama, baskı ve iplik boyama bölümlerinde 2018 yılı için yıllık üretim faaliyetleri sonucu meydana gelen karbon ayak izi miktarları değerlendirilmiştir. Fabrikada üretim yapılan bölümler arasında karbon ayak izi miktarları karşılaştırıldığında, konfeksiyon bölümü 24,39 kg-CO2e/kg-ürün ile en yüksek değere sahiptir. Konfeksiyon bölümünü takiben kumaş boyama, baskı ve iplik boyama için karbon ayak izi miktarları sırasıyla, 21,57 kg-CO2e/kg-ürün, 20,32 kg-CO2e/kg-ürün ve 19,28 kg-CO2e/kg-ürün olarak tespit edilmiştir. Proseslerde karbon ayak izi oluşumunun başlıca sebepleri doğalgaz, kömür ve motorin kullanımıdır. Doğalgaz, kömür ve motorin kaynaklı toplam karbon ayak izi oranı iplik boyama bölümünde %92 iken, baskı, kumaş boyama ve konfeksiyon bölümleri için bu oranlar sırasıyla %84, %82 ve %73 olarak belirlenmiştir. Karbon ayak izinin azaltılması amacıyla ilk yapılması gereken üretimde fosil yakıtların kullanımından vazgeçmek veya kullanımını azaltmak olmalıdır. Karbon ayak izinin azaltılmasında modern ekipman teknolojisinin tercih edilmesi, enerji tasarrufu, giyim süresi dolan kumaşların tekrar hammadde olarak kullanımı, makinelerin düzenli olarak bakımlarının yapılması, sıcak su tanklarının yalıtımlı hale getirilmesi ve enerji tasarruflu aydınlatma elemanlarının kullanımı büyük oranda katkı sağlayabilir. Karbon ayak izinin azaltılması hem ekonomik kazancın artırılması hem de iklim değişikliğinin azaltılabilmesi için büyük önem taşımaktadır.

References

  • [1] Aksay, C. S., Ketenoğlu, O., Kurt, L. 2005. Küresel Isınma ve İklim Değişikliği. Selçuk Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 25, 29-41.
  • [2] Öztürk, K. 2002. Küresel İklim Değişikliği ve Türkiye’ye Olası Etkileri. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 22(1), 47-65.
  • [3] Gunathilaka, L. F. D. Z., Gunawardana K. D. 2015. Carbon Footprint Calculation from Cradle to Grave: A Case Study of Rubber Manufacturing Process in Sri Lanka. International Journal of Business and Social Science, 6(10), 82-94.
  • [4] Mutlu, V., Özgür, C., Bekaroğlu, Ş. Ş. K. 2018. Kauçuk Endüstrisinde Karbon Ayak izinin Belirlenmesi. Bilge Internatiolan Journal of science and Technology Research, 2(2), 139-146.
  • [5] Keskin, S. S., Erdil, M., Sennaroğlu, B. 2017. Bir Tekstil Fabrikasının Kumaş Üretiminde Enerji ve Karbon Ayak İzlerinin Belirlenmesi. VII. Ulusal Hava Kirliliği ve Kontrolü Sempozyumu, 1-3 Kasım, Antalya, 95-105.
  • [6] Remington, C. 2020. Reducing the carbon footprint in textile manufacturing. Ecotextile News. https://www.ecotextile.com/sponsored-c ontent/reducing-the-carbon-footprint-in-textile-manufacturing.html (Erişim Tarihi: 24.01.2020).
  • [7] Akhtar, S., Baig, S. F., Saif, S., Mahmood, A., Ahmad, S. R. 2017. Five Year Carbon Footprint of a Textile Industry: A Podium to incorporate Sustainability. Nature Environment and Pollution Technology. 16(1), 125-132.
  • [8] IPCC, 2006. IPCC Guidelines for National Greenhouse Gas Inventories. General Guidance and Reporting. http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol1.html (Erişim Tarihi: 28.12.2019).
  • [9] Greenpeace, 1998. Guide to the Kyoto Protocol. https://www.readkong.com/page/greenpeace-international-1179766 (Erişim Tarihi: 25.12.2019).
  • [10] Parry, M. L. Canziani, O. F. Palutikof, J. P. Van der Linden, C. E. 2007. Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 976.
  • [11] USEPA, 2006. U.S. Environmental Protection Agency, “Global Mitigation of Non CO2 Greenhouse Gases” http://www.epa.gov/ nonco2/econ-inv/international.html (Erişim: 6.12.2019).
  • [12] Patel, J. 2006. Green sky thinking. Environment Business, 122, 32.
  • [13] Galli, A., Wiedmann, T., Ercin, E., Knoblauch, D., Ewing, B., Giljum, S. 2012. Integrating Ecological Carbon and Water Footprint into a “Footprint Family” of Indicators: Definition and Role in Tracking Human Pressure on the Planet. Ecological Indicators, 16, 100-112.
  • [14] IPCC, 2013. Anthropogenic and Natural Radiative Forcing. Climate Change 2013: The Physical Science Basis. https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter08_FINAL.pdf (Erişim Tarihi: 15.12.2019).
  • [15] Matthews, H. S., Hendrickson, C. T., Weber, C. L. 2008. The Importance of Carbon Footprint Estimation Boundarie. Environmental Science Technology, 42, 5839–5842.
  • [16] Ercin, E., Hoekstra, A. Y. 2012. Carbon and Water Footprints Concepts. Methodologies and Policy Responses. United Nations World Water Assessment Programme. United Nations Educational Scientific and Cultural Organization, Paris, France, 26s.
  • [17] Inakollu, S., Morin, R., Keefe, R. 2017. Carbon Footprint Estimation in Fiber Optics Industry: A Case Study of OFS Fitel, LLC. Sustainability, 9(5), 865-881.
  • [18] McCurry, J. 2009. Environment to Impact on Demand. International Dyer, 194(2), 9.
  • [19] Kirchain, R., Olivetti, E., Miller, T. R., Greene, S. 2015. Sustainable Apparel Materials. http://globalcompostproject.org/wp-content/u ploads/2015/10/SustainableApparelMaterials.pdf (Erişim Tarihi: 29.12.2019).
  • [20] Herva, M., Franco, A., Ferreiro, S., A’lvarez, A., Roca, E. 2011. An approach for the Application of the Ecological Footprint as Environmental Indicator in the Textile Sector. Journal of Hazardous Materials, 156(1–3), 478–487.
  • [21] Hasanbeigi, A., Hasanabadi, A., Abdorrazaghi, M. 2012. Comparison Analysis of Energy Intensity for Five Major Sub-sectors of The Textile Industry in Iran. Journal of Cleaner Production, 23, 186-194.
  • [22] Yan, Y., Wang, C., Ding, D., Zhang, Y., Wu, G., Wang, L., Liue, X., Due, C., Zhang, Y., Zhao, C. 2016. Industrial Carbon Footprint of Several Typical Chinese Textile Fabrics. Acta Ecologica Sinica, 36(3), 119-125.
  • [23] Lowe, J. 1981. Energy Usage and Potential Savings in the Woollen Industry. Wool Industry Research Association, Wira House, West Park Ring Road, Leeds.
  • [24] Ogilvie, S. M. 1992. A Review of the Environmental Impact of Recycling. Report. LR 911 (MR) Warren Spring Laboratiories, Stevenage, UK.
  • [25] McDougall, F., White, P., Franke, M., Hindle, P. 2001. Integrated Solid Waste Management: a Life Cycle Inventory. 2nd Edition. Blackwell Science Ltd. USA, 532s.
  • [26] DBEIS, 2017. Greenhouse gas reporting: conversion factors. Department for Business, Energy & Industrial Strategy, Condensed set (for most users), https://www.gov.uk/government /publications/greenhouse-gas-reporting-conver sion-factors-2017 (Erişim Tarihi: 15.11.2019).
  • [27] Dulkadiroğlu, H. 2018. Türkiye’de Elektrik Üretiminin Sera Gazı Emisyonları Açısından İncelenmesi. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7(1), 67-74.
  • [28] Dhayaneswaran, Y., Ashokkumar, L. 2013. A Study on Energy Conservation in Textile Industry. Journal of The Institution of Engineers (India) Series B, 94(1), 53–60.
  • [29] Muthu, S.S., Li, Y., Hu, J.Y., Ze, L., 2012. Carbon Footprint Reduction in the Textile Process Chain: Recycling of Textile Materials. Fibers and Polymers, 13(8), 1065-1070.

Determination of Carbon Footprint in Textile Industry

Year 2021, Volume: 25 Issue: 1, 28 - 35, 20.04.2021
https://doi.org/10.19113/sdufenbed.670336

Abstract

In this study, the carbon footprint amounts from annual production activities for 2018 in the apparel, fabric dyeing, printing and yarn dyeing departments of a textile factory were evaluated. When inter-departmental carbon footprints are compared, the apparel department has the highest value with 24.39 kg-CO2e/kg-product. Following the apparel department, carbon footprint amounts for fabric dyeing, printing and yarn dyeing departments were calculated as 21.57 kg-CO2e/kg-product, 20.32 kg-CO2e/kg-product and 19.28 kg-CO2e/kg-product respectively. Natural gas, coal and diesel sources used in the processes have been identified as the cause of carbon footprint to a great extent. While 92% of the total carbon footprint in the yarn dyeing department originated from natural gas, coal and diesel, these ratios were 84%, 82% and 73% for printing, fabric dyeing and apparel departments respectively. The first step to reduce the carbon footprint is to abandon or reduce the use of fossil fuels in production. The use of modern equipment technology, energy saving, re-use of garments as raw materials, regular maintenance of machines, insulating hot water tanks and the use of energy-saving lighting elements can greatly contribute to the reduction of carbon emissions. Reducing the carbon footprint is of great importance for both increasing economic gain and reducing the speed of climate change.

References

  • [1] Aksay, C. S., Ketenoğlu, O., Kurt, L. 2005. Küresel Isınma ve İklim Değişikliği. Selçuk Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 25, 29-41.
  • [2] Öztürk, K. 2002. Küresel İklim Değişikliği ve Türkiye’ye Olası Etkileri. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 22(1), 47-65.
  • [3] Gunathilaka, L. F. D. Z., Gunawardana K. D. 2015. Carbon Footprint Calculation from Cradle to Grave: A Case Study of Rubber Manufacturing Process in Sri Lanka. International Journal of Business and Social Science, 6(10), 82-94.
  • [4] Mutlu, V., Özgür, C., Bekaroğlu, Ş. Ş. K. 2018. Kauçuk Endüstrisinde Karbon Ayak izinin Belirlenmesi. Bilge Internatiolan Journal of science and Technology Research, 2(2), 139-146.
  • [5] Keskin, S. S., Erdil, M., Sennaroğlu, B. 2017. Bir Tekstil Fabrikasının Kumaş Üretiminde Enerji ve Karbon Ayak İzlerinin Belirlenmesi. VII. Ulusal Hava Kirliliği ve Kontrolü Sempozyumu, 1-3 Kasım, Antalya, 95-105.
  • [6] Remington, C. 2020. Reducing the carbon footprint in textile manufacturing. Ecotextile News. https://www.ecotextile.com/sponsored-c ontent/reducing-the-carbon-footprint-in-textile-manufacturing.html (Erişim Tarihi: 24.01.2020).
  • [7] Akhtar, S., Baig, S. F., Saif, S., Mahmood, A., Ahmad, S. R. 2017. Five Year Carbon Footprint of a Textile Industry: A Podium to incorporate Sustainability. Nature Environment and Pollution Technology. 16(1), 125-132.
  • [8] IPCC, 2006. IPCC Guidelines for National Greenhouse Gas Inventories. General Guidance and Reporting. http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol1.html (Erişim Tarihi: 28.12.2019).
  • [9] Greenpeace, 1998. Guide to the Kyoto Protocol. https://www.readkong.com/page/greenpeace-international-1179766 (Erişim Tarihi: 25.12.2019).
  • [10] Parry, M. L. Canziani, O. F. Palutikof, J. P. Van der Linden, C. E. 2007. Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 976.
  • [11] USEPA, 2006. U.S. Environmental Protection Agency, “Global Mitigation of Non CO2 Greenhouse Gases” http://www.epa.gov/ nonco2/econ-inv/international.html (Erişim: 6.12.2019).
  • [12] Patel, J. 2006. Green sky thinking. Environment Business, 122, 32.
  • [13] Galli, A., Wiedmann, T., Ercin, E., Knoblauch, D., Ewing, B., Giljum, S. 2012. Integrating Ecological Carbon and Water Footprint into a “Footprint Family” of Indicators: Definition and Role in Tracking Human Pressure on the Planet. Ecological Indicators, 16, 100-112.
  • [14] IPCC, 2013. Anthropogenic and Natural Radiative Forcing. Climate Change 2013: The Physical Science Basis. https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter08_FINAL.pdf (Erişim Tarihi: 15.12.2019).
  • [15] Matthews, H. S., Hendrickson, C. T., Weber, C. L. 2008. The Importance of Carbon Footprint Estimation Boundarie. Environmental Science Technology, 42, 5839–5842.
  • [16] Ercin, E., Hoekstra, A. Y. 2012. Carbon and Water Footprints Concepts. Methodologies and Policy Responses. United Nations World Water Assessment Programme. United Nations Educational Scientific and Cultural Organization, Paris, France, 26s.
  • [17] Inakollu, S., Morin, R., Keefe, R. 2017. Carbon Footprint Estimation in Fiber Optics Industry: A Case Study of OFS Fitel, LLC. Sustainability, 9(5), 865-881.
  • [18] McCurry, J. 2009. Environment to Impact on Demand. International Dyer, 194(2), 9.
  • [19] Kirchain, R., Olivetti, E., Miller, T. R., Greene, S. 2015. Sustainable Apparel Materials. http://globalcompostproject.org/wp-content/u ploads/2015/10/SustainableApparelMaterials.pdf (Erişim Tarihi: 29.12.2019).
  • [20] Herva, M., Franco, A., Ferreiro, S., A’lvarez, A., Roca, E. 2011. An approach for the Application of the Ecological Footprint as Environmental Indicator in the Textile Sector. Journal of Hazardous Materials, 156(1–3), 478–487.
  • [21] Hasanbeigi, A., Hasanabadi, A., Abdorrazaghi, M. 2012. Comparison Analysis of Energy Intensity for Five Major Sub-sectors of The Textile Industry in Iran. Journal of Cleaner Production, 23, 186-194.
  • [22] Yan, Y., Wang, C., Ding, D., Zhang, Y., Wu, G., Wang, L., Liue, X., Due, C., Zhang, Y., Zhao, C. 2016. Industrial Carbon Footprint of Several Typical Chinese Textile Fabrics. Acta Ecologica Sinica, 36(3), 119-125.
  • [23] Lowe, J. 1981. Energy Usage and Potential Savings in the Woollen Industry. Wool Industry Research Association, Wira House, West Park Ring Road, Leeds.
  • [24] Ogilvie, S. M. 1992. A Review of the Environmental Impact of Recycling. Report. LR 911 (MR) Warren Spring Laboratiories, Stevenage, UK.
  • [25] McDougall, F., White, P., Franke, M., Hindle, P. 2001. Integrated Solid Waste Management: a Life Cycle Inventory. 2nd Edition. Blackwell Science Ltd. USA, 532s.
  • [26] DBEIS, 2017. Greenhouse gas reporting: conversion factors. Department for Business, Energy & Industrial Strategy, Condensed set (for most users), https://www.gov.uk/government /publications/greenhouse-gas-reporting-conver sion-factors-2017 (Erişim Tarihi: 15.11.2019).
  • [27] Dulkadiroğlu, H. 2018. Türkiye’de Elektrik Üretiminin Sera Gazı Emisyonları Açısından İncelenmesi. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7(1), 67-74.
  • [28] Dhayaneswaran, Y., Ashokkumar, L. 2013. A Study on Energy Conservation in Textile Industry. Journal of The Institution of Engineers (India) Series B, 94(1), 53–60.
  • [29] Muthu, S.S., Li, Y., Hu, J.Y., Ze, L., 2012. Carbon Footprint Reduction in the Textile Process Chain: Recycling of Textile Materials. Fibers and Polymers, 13(8), 1065-1070.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Sezen Coşkun 0000-0001-7011-9187

Necdet Doğan 0000-0003-4703-5078

Publication Date April 20, 2021
Published in Issue Year 2021 Volume: 25 Issue: 1

Cite

APA Coşkun, S., & Doğan, N. (2021). Tekstil Endüstrisinde Karbon Ayak İzinin Belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(1), 28-35. https://doi.org/10.19113/sdufenbed.670336
AMA Coşkun S, Doğan N. Tekstil Endüstrisinde Karbon Ayak İzinin Belirlenmesi. SDÜ Fen Bil Enst Der. April 2021;25(1):28-35. doi:10.19113/sdufenbed.670336
Chicago Coşkun, Sezen, and Necdet Doğan. “Tekstil Endüstrisinde Karbon Ayak İzinin Belirlenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25, no. 1 (April 2021): 28-35. https://doi.org/10.19113/sdufenbed.670336.
EndNote Coşkun S, Doğan N (April 1, 2021) Tekstil Endüstrisinde Karbon Ayak İzinin Belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25 1 28–35.
IEEE S. Coşkun and N. Doğan, “Tekstil Endüstrisinde Karbon Ayak İzinin Belirlenmesi”, SDÜ Fen Bil Enst Der, vol. 25, no. 1, pp. 28–35, 2021, doi: 10.19113/sdufenbed.670336.
ISNAD Coşkun, Sezen - Doğan, Necdet. “Tekstil Endüstrisinde Karbon Ayak İzinin Belirlenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25/1 (April 2021), 28-35. https://doi.org/10.19113/sdufenbed.670336.
JAMA Coşkun S, Doğan N. Tekstil Endüstrisinde Karbon Ayak İzinin Belirlenmesi. SDÜ Fen Bil Enst Der. 2021;25:28–35.
MLA Coşkun, Sezen and Necdet Doğan. “Tekstil Endüstrisinde Karbon Ayak İzinin Belirlenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 25, no. 1, 2021, pp. 28-35, doi:10.19113/sdufenbed.670336.
Vancouver Coşkun S, Doğan N. Tekstil Endüstrisinde Karbon Ayak İzinin Belirlenmesi. SDÜ Fen Bil Enst Der. 2021;25(1):28-35.

e-ISSN: 1308-6529