Research Article
BibTex RIS Cite

Phytoremediation of Boron using Lemna minor from Synthetic Aqueous Solutions and Real Geothermal Water

Year 2021, Volume: 25 Issue: 2, 217 - 228, 20.08.2021
https://doi.org/10.19113/sdufenbed.798630

Abstract

In this study, phytoremediation performance of Lemna minor L. on boron removal from synthetic solution and real geothermal water was evaluated. Effects of initial boron concentration, initial pH, water height in cell, and initial humic acid concentration were investigated. The maximum removal efficiency was achieved as 96.7 % with the experimental run with 5 mg L-1 initial boron concentration, pH 8, and 1.5 cm water depth. Increasing the initial boron concentration from 5 to 30 mg L-1 resulted in a drastic decrease in removal efficiency to 36.6 %, due to the toxic effect of high boron content, which was clearly observed from deterioration of plant’s color and structure. SEM, FTIR, and mass balance analyses revealed that the boron removal mechanism was mainly biosorption. Geothermal water experiments indicated L. minor’s applicability with 59.5% removal efficiency, proving high potential in being used for post-treatment of geothermal waters with high boron content.

References

  • [1] WHO/UNICEF, 2014. Progress on Drinking-water and Sanitation-2014 Update. World Health Organization, 1, 1.
  • [2] Malley, Z. J. U., Taeb, M ., Matsumoto, T ., Takeya, H. 2009. Environmental sustainability and water availability: analyses of the scarcity and improvement opportunities in the Usangu plain, Tanzania, Phys. Chem. Earth, Parts A/B/C. 34, 3–13.
  • [3] Melikoğlu, M, 2017. Geothermal energy in Turkey and around the World: A review of the literature and an analysis based on Turkey's Vision 2023 energy targets, Renew. Sust. Energ. Rev. 76, 485–492.
  • [3] Gallup, D . L. 2007. Treatment of geothermal waters for production of industrial, agricultural or drinking water, Geothermics. 36, 473–483.
  • [5] Baba, A ., Sözbilir, H. 2012. Source of arsenic based on geological and hydrogeochemical properties of geothermal systems in Western Turkey, Chem. Geol., 334, 364–377.
  • [6] Kartikaningsih, D., Shih, Y. J ., Huang, Y. H . 2016. Boron removal from boric acid wastewater by electrocoagulation using aluminum as sacrificial anode, Sustain. Environ. Res. 1-6.
  • [7] Yılmaz, A. E., Boncukoğlu, R., Kocakerim, M. M., Yılmaz, M. T., Paluluoğlu, C. 2008 Boron removal from geothermal waters by electrocoagulation, J. Hazard. Mater., 153, 146-151.
  • [8] Barth, S., 2000. Utilization of boron as a critical parameter in water quality for thermal and mineral water resources in SW German and N Switzerland, Environ. Geol., 40, 1-2.
  • [9] Gude, V. G., 2016. Geothermal source potential for water desalination–current status and future perspective, Renew. Sust. Energ. Rev., 57, 1038–1065.
  • [10] Gemici Ü., Tarcan G. 2002. Distribution of boron in thermal waters of western Anatolia, Turkey, and examples of their environmental impacts, Environ. Geol., 1-8.
  • [11] Hilal, N., Kim, G. J., Somerfield, C. 2011. Boron removal from saline water: a comprehensive review, Desalination, 273, 23–35.
  • [12] Bryjak, M., Wolska, J., Kabay, N. 2008. Removal of boron from seawater by adsorption-membrane hybrid process: implementations and challenges, Desalination, 223, 57-62.
  • [13] Nielsen, F. H., 2002. The nutritional importance and pharmacological potential of boron for higher animals and human. In: Goldbach H.E., Brown P.H., Rerkasem B., Thellier M., Wimmer M.A., Bell R.W. (eds) Boron in Plant and Animal Nutrition. Springer, Boston, MA.
  • [14] WHO, 1998. Boron. Geneva, World Health Organization, International Programme on Chemical Safety.
  • [15] Banasiak, L. J., Schafer, A. I. 2009. Removal of organic trace contaminants by electrodialysis in a remote Australian community, Desalination, 248, 48-57.
  • [16] Ozbey-Unal, B., Imer, D. Y., Keskinler, B., Koyuncu, I. 2018. Boron removal from geothermal water by air gap membrane distillation, Desalination, 433, 141–150.
  • [17] Kabay, N., Köseoğlu, P., Yapıcı, D., Yüksel, Ü., Yüksel, M. 2013. Coupling ion exchange with ultrafiltration for boron removal from geothermal water-investigation of process parameters and recycle tests. Desalination, 316, 17–22.
  • [18] Yavuz, E., Arar, Ö., Yüksel, M., Yüksel, Ü., Kabay, N., 2013. Removal of boron from geothermal water by RO system-II-effect of pH, Desalination, 310, 135–139.
  • [19] Nagaraj, R., Thirugnanamurthy, D., Rajput, M. M., Panigrahi, B. K. 2016. Techno-economic analysis of hybrid power system sizing applied to small desalination plants for sustainable operation, Int. J. Sustain. Built Environ., 5, 269–276.
  • [20] AlMarzooqi, F. A., Al Ghaferi-Saadat, I, Hilal, N. 2014. Application of Capacitive Deionization in Water Desalination: A Review, Desalination, 342, 3-15.
  • [21] Taştan, B. E., Duygu, E., Dönmez G. 2012. Boron bioremoval by a newly isolated Chlorella sp. and its stimulation by growth stimulators, Water Res. 46, 167-175.
  • [22] Böcük, H., Yakar, A., Türker, O. C. 2013. Assessment of Lemna gibba L. (duckweed) as a potential ecological indicator for contaminated aquatic ecosystem by boron mine effluent, Ecol. Indic., 29, 538–548.
  • [23] Türker, O. C., Yakar, A., Gür, N. 2017. Bioaccumulation and toxicity assessment of irrigation water contaminated with boron (B) using duckweed (Lemna gibba L.) in a batch reactor system, J. Hazard. Mater., 324, 151–159.
  • [24] Tatar, Ş. Y., Öbek, E. 2014. Potential of Lemna gibba L. and Lemna minor L. for accumulation of Boron from secondary effluents, Ecol. Eng. 70, 332–336.
  • [25] Yaseen, D. A., Scholz, M. 2016. Shallow pond systems planted with Lemna minor treating azo dyes, Ecol. Eng. 94, 295–305.
  • [26] Movafeghi, A., Khataee, A. R., Torbati, S., Zarei, M., Salehi Lisar, S. Y. 2013. Bioremoval of c. i. basic red 46 as an azo dye from contaminated eater by Lemna minor L.: modeling of key factor by neural network, Environ Prog Sustain Energy, 32, 1082-1089.
  • [27] Ekperusi, O. A., Sikoki, F. D., Nwachukwu, O. E. 2019. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective, Chemosphere, 223, 285-309.
  • [28] Hoagland, D. R., 1948. Lectures on the inorganic nutrition of plants, Chronica Botanica Comp, Waltham.
  • [29] Mclay, C. L. 1976. The effect of pH on the population growth of three species of duckweed: Spirodela oligorrhiza, Lemna minor and Wolffia arrhizal, Freshwater Biol., 6, 125–136.
  • [30] Marín, C. M. D. C., Oron, G. 2007. Boron removal by the duckweed Lemna gibba: a potential method for the remediation of boron-polluted waters, Water Res., 41, 4579–4584.
  • [31] Wildes, R. A., Neales, T. F. 1970. The adsorption of boron by disks of plant storage tissues, Aust. J. biol. Sci., 24, 873-84.
  • [32] Pitman, M. G. 1963. The determination of the salt relations of the cytoplasmic phase in cells of beetroot tissue, Aust. J. bioI. Sci., 16, 647-68.
  • [33] Blevins, D. G., Lukaszewski, K. 1998. Boron in plant structure and function, Annu. Rev. Plant Physiol. Mol. Biol., 49, 491–500.
  • [34] Davis, S. M., Drake, K. D., Maier, K. J. 2002. Toxicity of boron to the duckweed Spirodella polyrrhiza, Chemosphere, 48, 615–620.
  • [35] Grievea, C. M., Possa, J. A., Grattanb, S. R., Suareza, D. L., Smith, T. E. 2010. The combined effects of salinity and excess boron on mineral ion relations in broccoli, Sci. Hortic., 125, 179–187.
  • [36] Reid, R. 2010. Can we really increase yields by making crop plants tolerant to boron toxicity? Plant Sci., 178, 9–11.
  • [37] Naghii, M. R., Samman, S. 1997. The effect of borononplasma testoterone and plasma lipid in rats, Nutr. Res., 17, 523–531.
  • [38] Frick, H. 1985. Boron tolerance and accumulation in the duckweed, Lemna minor, J. Plant Nutr. 8, 1123-1129.
  • [39] Leenheer, J. A. 2009. Systematic approaches to comprehensive analyses of natural organic matter, Ann. Environ. Sci., 3, 1–130.
  • [40] Tipping, E. 2002. Cation Binding by Humic Substances; Cambridge University Press: Cambridge, page 434.
  • [41] Goli, E., Hiemstra, T., Rahnemaie R. 2019. Interaction of boron with humic acid and natural organic matter: Experiments and modeling, Chem. Geol., 515, 20 June 2019, 1-8.
  • [42] Hasan, S. A., Fariduddin, Q., Ali, B., Hayat, S., Ahmad, A. 2009. Cadmium: toxicity and tolarence in plants, J. Environ. Biol., 30, 165-174.
  • [43] Socrates, G., 2004. Infrared and Raman Characteristic Group Frequencies, Third Edition, John Wiley & Sons, England.
  • [44] Liu, C., Gu, W., Dai, Z., Li, J., Jiang, H., Zhang, Q. 2018. Boron accumulation by Lemna minor L. under salt stress, Sci. Rep., 8, 8954.
  • [45] Smith, T. E., Grattan, S. R., Grieve, C. M., Poss, J. A.,Suarez, D. L. 2010. Salinity’s influence on boron toxicity in broccoli: II. Impacts on boron uptake, uptake mechanisms and tissue ion relations, Agr. Water Manage., 97, 783–791.
  • [46] Yermiyahu, U., Ben-Gal, A., Keren, R., Reid, R. J. 2008. Combined effect of salinity and excess boron on plant growth and yield, Plant Soil., 304, 73–87.
  • [47] Sree, K. S., Adelmann, K., Garcia, C., Lam, E., Appenroth, K. J. 2015. Natural variance in salt tolerance and induction of starch accumulation in duckweeds, Planta., 241, 1395–1404.

Bor İçeren Sentetik Sulu Çözeltilerin ve Jeotermal Suların Lemna minor Kullanılarak Bitkisel Arıtım Tekniği ile Islahı

Year 2021, Volume: 25 Issue: 2, 217 - 228, 20.08.2021
https://doi.org/10.19113/sdufenbed.798630

Abstract

Bu çalışma kapsamında bor içeren sentetik çözeltilerin ve jeotermal suların Lemna minor L. bitkisi kullanılarak ıslahı çalışılmıştır. Çalışmada başlangıç bor konsantrasyonu, pH, arıtım hücresindeki su yüksekliği ve başlangıç hümik asit konsantrasyonlarının giderim verimi üzerine etkisi incelenmiştir. 5 mg L-1 başlangıç bor konsantrasyonu, pH 8 ve 1,5 cm su derinliğinde yürütülen deneysel çalışma ile maksimum bor giderim verimi % 96,7 olarak bulunmuştur. Başlangıç bor konsantrasyonunun 5’den 30 mg L-1’e yükseltilmesi ile bitkinin rengi ve yapısı yüksek bor içeriğinin bitki üzerindeki toksik etkisi nedeni ile bozulmuştur ve sonucunda giderim verimi 36,6% olarak bulunmuştur. SEM, FTIR ve kütle dengesi analizleri, bor giderim mekanizmasının esas olarak biyosorpsiyon olduğunu ortaya koymuştur. Ek olarak, jeotermal su arıtımı çalışmaları, L. minor'un 59,5% bor giderim verimliliği ile uygulanabilirliğini göstermiştir ve yüksek bor içeriğine sahip jeotermal suların son arıtımı için çalışmanın yüksek potansiyeli olduğunu kanıtlamıştır.

References

  • [1] WHO/UNICEF, 2014. Progress on Drinking-water and Sanitation-2014 Update. World Health Organization, 1, 1.
  • [2] Malley, Z. J. U., Taeb, M ., Matsumoto, T ., Takeya, H. 2009. Environmental sustainability and water availability: analyses of the scarcity and improvement opportunities in the Usangu plain, Tanzania, Phys. Chem. Earth, Parts A/B/C. 34, 3–13.
  • [3] Melikoğlu, M, 2017. Geothermal energy in Turkey and around the World: A review of the literature and an analysis based on Turkey's Vision 2023 energy targets, Renew. Sust. Energ. Rev. 76, 485–492.
  • [3] Gallup, D . L. 2007. Treatment of geothermal waters for production of industrial, agricultural or drinking water, Geothermics. 36, 473–483.
  • [5] Baba, A ., Sözbilir, H. 2012. Source of arsenic based on geological and hydrogeochemical properties of geothermal systems in Western Turkey, Chem. Geol., 334, 364–377.
  • [6] Kartikaningsih, D., Shih, Y. J ., Huang, Y. H . 2016. Boron removal from boric acid wastewater by electrocoagulation using aluminum as sacrificial anode, Sustain. Environ. Res. 1-6.
  • [7] Yılmaz, A. E., Boncukoğlu, R., Kocakerim, M. M., Yılmaz, M. T., Paluluoğlu, C. 2008 Boron removal from geothermal waters by electrocoagulation, J. Hazard. Mater., 153, 146-151.
  • [8] Barth, S., 2000. Utilization of boron as a critical parameter in water quality for thermal and mineral water resources in SW German and N Switzerland, Environ. Geol., 40, 1-2.
  • [9] Gude, V. G., 2016. Geothermal source potential for water desalination–current status and future perspective, Renew. Sust. Energ. Rev., 57, 1038–1065.
  • [10] Gemici Ü., Tarcan G. 2002. Distribution of boron in thermal waters of western Anatolia, Turkey, and examples of their environmental impacts, Environ. Geol., 1-8.
  • [11] Hilal, N., Kim, G. J., Somerfield, C. 2011. Boron removal from saline water: a comprehensive review, Desalination, 273, 23–35.
  • [12] Bryjak, M., Wolska, J., Kabay, N. 2008. Removal of boron from seawater by adsorption-membrane hybrid process: implementations and challenges, Desalination, 223, 57-62.
  • [13] Nielsen, F. H., 2002. The nutritional importance and pharmacological potential of boron for higher animals and human. In: Goldbach H.E., Brown P.H., Rerkasem B., Thellier M., Wimmer M.A., Bell R.W. (eds) Boron in Plant and Animal Nutrition. Springer, Boston, MA.
  • [14] WHO, 1998. Boron. Geneva, World Health Organization, International Programme on Chemical Safety.
  • [15] Banasiak, L. J., Schafer, A. I. 2009. Removal of organic trace contaminants by electrodialysis in a remote Australian community, Desalination, 248, 48-57.
  • [16] Ozbey-Unal, B., Imer, D. Y., Keskinler, B., Koyuncu, I. 2018. Boron removal from geothermal water by air gap membrane distillation, Desalination, 433, 141–150.
  • [17] Kabay, N., Köseoğlu, P., Yapıcı, D., Yüksel, Ü., Yüksel, M. 2013. Coupling ion exchange with ultrafiltration for boron removal from geothermal water-investigation of process parameters and recycle tests. Desalination, 316, 17–22.
  • [18] Yavuz, E., Arar, Ö., Yüksel, M., Yüksel, Ü., Kabay, N., 2013. Removal of boron from geothermal water by RO system-II-effect of pH, Desalination, 310, 135–139.
  • [19] Nagaraj, R., Thirugnanamurthy, D., Rajput, M. M., Panigrahi, B. K. 2016. Techno-economic analysis of hybrid power system sizing applied to small desalination plants for sustainable operation, Int. J. Sustain. Built Environ., 5, 269–276.
  • [20] AlMarzooqi, F. A., Al Ghaferi-Saadat, I, Hilal, N. 2014. Application of Capacitive Deionization in Water Desalination: A Review, Desalination, 342, 3-15.
  • [21] Taştan, B. E., Duygu, E., Dönmez G. 2012. Boron bioremoval by a newly isolated Chlorella sp. and its stimulation by growth stimulators, Water Res. 46, 167-175.
  • [22] Böcük, H., Yakar, A., Türker, O. C. 2013. Assessment of Lemna gibba L. (duckweed) as a potential ecological indicator for contaminated aquatic ecosystem by boron mine effluent, Ecol. Indic., 29, 538–548.
  • [23] Türker, O. C., Yakar, A., Gür, N. 2017. Bioaccumulation and toxicity assessment of irrigation water contaminated with boron (B) using duckweed (Lemna gibba L.) in a batch reactor system, J. Hazard. Mater., 324, 151–159.
  • [24] Tatar, Ş. Y., Öbek, E. 2014. Potential of Lemna gibba L. and Lemna minor L. for accumulation of Boron from secondary effluents, Ecol. Eng. 70, 332–336.
  • [25] Yaseen, D. A., Scholz, M. 2016. Shallow pond systems planted with Lemna minor treating azo dyes, Ecol. Eng. 94, 295–305.
  • [26] Movafeghi, A., Khataee, A. R., Torbati, S., Zarei, M., Salehi Lisar, S. Y. 2013. Bioremoval of c. i. basic red 46 as an azo dye from contaminated eater by Lemna minor L.: modeling of key factor by neural network, Environ Prog Sustain Energy, 32, 1082-1089.
  • [27] Ekperusi, O. A., Sikoki, F. D., Nwachukwu, O. E. 2019. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective, Chemosphere, 223, 285-309.
  • [28] Hoagland, D. R., 1948. Lectures on the inorganic nutrition of plants, Chronica Botanica Comp, Waltham.
  • [29] Mclay, C. L. 1976. The effect of pH on the population growth of three species of duckweed: Spirodela oligorrhiza, Lemna minor and Wolffia arrhizal, Freshwater Biol., 6, 125–136.
  • [30] Marín, C. M. D. C., Oron, G. 2007. Boron removal by the duckweed Lemna gibba: a potential method for the remediation of boron-polluted waters, Water Res., 41, 4579–4584.
  • [31] Wildes, R. A., Neales, T. F. 1970. The adsorption of boron by disks of plant storage tissues, Aust. J. biol. Sci., 24, 873-84.
  • [32] Pitman, M. G. 1963. The determination of the salt relations of the cytoplasmic phase in cells of beetroot tissue, Aust. J. bioI. Sci., 16, 647-68.
  • [33] Blevins, D. G., Lukaszewski, K. 1998. Boron in plant structure and function, Annu. Rev. Plant Physiol. Mol. Biol., 49, 491–500.
  • [34] Davis, S. M., Drake, K. D., Maier, K. J. 2002. Toxicity of boron to the duckweed Spirodella polyrrhiza, Chemosphere, 48, 615–620.
  • [35] Grievea, C. M., Possa, J. A., Grattanb, S. R., Suareza, D. L., Smith, T. E. 2010. The combined effects of salinity and excess boron on mineral ion relations in broccoli, Sci. Hortic., 125, 179–187.
  • [36] Reid, R. 2010. Can we really increase yields by making crop plants tolerant to boron toxicity? Plant Sci., 178, 9–11.
  • [37] Naghii, M. R., Samman, S. 1997. The effect of borononplasma testoterone and plasma lipid in rats, Nutr. Res., 17, 523–531.
  • [38] Frick, H. 1985. Boron tolerance and accumulation in the duckweed, Lemna minor, J. Plant Nutr. 8, 1123-1129.
  • [39] Leenheer, J. A. 2009. Systematic approaches to comprehensive analyses of natural organic matter, Ann. Environ. Sci., 3, 1–130.
  • [40] Tipping, E. 2002. Cation Binding by Humic Substances; Cambridge University Press: Cambridge, page 434.
  • [41] Goli, E., Hiemstra, T., Rahnemaie R. 2019. Interaction of boron with humic acid and natural organic matter: Experiments and modeling, Chem. Geol., 515, 20 June 2019, 1-8.
  • [42] Hasan, S. A., Fariduddin, Q., Ali, B., Hayat, S., Ahmad, A. 2009. Cadmium: toxicity and tolarence in plants, J. Environ. Biol., 30, 165-174.
  • [43] Socrates, G., 2004. Infrared and Raman Characteristic Group Frequencies, Third Edition, John Wiley & Sons, England.
  • [44] Liu, C., Gu, W., Dai, Z., Li, J., Jiang, H., Zhang, Q. 2018. Boron accumulation by Lemna minor L. under salt stress, Sci. Rep., 8, 8954.
  • [45] Smith, T. E., Grattan, S. R., Grieve, C. M., Poss, J. A.,Suarez, D. L. 2010. Salinity’s influence on boron toxicity in broccoli: II. Impacts on boron uptake, uptake mechanisms and tissue ion relations, Agr. Water Manage., 97, 783–791.
  • [46] Yermiyahu, U., Ben-Gal, A., Keren, R., Reid, R. J. 2008. Combined effect of salinity and excess boron on plant growth and yield, Plant Soil., 304, 73–87.
  • [47] Sree, K. S., Adelmann, K., Garcia, C., Lam, E., Appenroth, K. J. 2015. Natural variance in salt tolerance and induction of starch accumulation in duckweeds, Planta., 241, 1395–1404.
There are 47 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Hatice Eser Ökten 0000-0001-7511-940X

Ayşegül Yağmur Gören 0000-0003-1114-6059

Publication Date August 20, 2021
Published in Issue Year 2021 Volume: 25 Issue: 2

Cite

APA Ökten, H. E., & Gören, A. Y. (2021). Phytoremediation of Boron using Lemna minor from Synthetic Aqueous Solutions and Real Geothermal Water. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(2), 217-228. https://doi.org/10.19113/sdufenbed.798630
AMA Ökten HE, Gören AY. Phytoremediation of Boron using Lemna minor from Synthetic Aqueous Solutions and Real Geothermal Water. J. Nat. Appl. Sci. August 2021;25(2):217-228. doi:10.19113/sdufenbed.798630
Chicago Ökten, Hatice Eser, and Ayşegül Yağmur Gören. “Phytoremediation of Boron Using Lemna Minor from Synthetic Aqueous Solutions and Real Geothermal Water”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25, no. 2 (August 2021): 217-28. https://doi.org/10.19113/sdufenbed.798630.
EndNote Ökten HE, Gören AY (August 1, 2021) Phytoremediation of Boron using Lemna minor from Synthetic Aqueous Solutions and Real Geothermal Water. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25 2 217–228.
IEEE H. E. Ökten and A. Y. Gören, “Phytoremediation of Boron using Lemna minor from Synthetic Aqueous Solutions and Real Geothermal Water”, J. Nat. Appl. Sci., vol. 25, no. 2, pp. 217–228, 2021, doi: 10.19113/sdufenbed.798630.
ISNAD Ökten, Hatice Eser - Gören, Ayşegül Yağmur. “Phytoremediation of Boron Using Lemna Minor from Synthetic Aqueous Solutions and Real Geothermal Water”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25/2 (August 2021), 217-228. https://doi.org/10.19113/sdufenbed.798630.
JAMA Ökten HE, Gören AY. Phytoremediation of Boron using Lemna minor from Synthetic Aqueous Solutions and Real Geothermal Water. J. Nat. Appl. Sci. 2021;25:217–228.
MLA Ökten, Hatice Eser and Ayşegül Yağmur Gören. “Phytoremediation of Boron Using Lemna Minor from Synthetic Aqueous Solutions and Real Geothermal Water”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 25, no. 2, 2021, pp. 217-28, doi:10.19113/sdufenbed.798630.
Vancouver Ökten HE, Gören AY. Phytoremediation of Boron using Lemna minor from Synthetic Aqueous Solutions and Real Geothermal Water. J. Nat. Appl. Sci. 2021;25(2):217-28.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.