Research Article
BibTex RIS Cite

Endüstriyel Isıl İşlemin Dişbudak (Fraxinus excelsior) Odununun Boyutsal Stabilite ve Islanabilirliği Üzerine Etkisi

Year 2021, Volume: 25 Issue: 3, 473 - 480, 30.12.2021
https://doi.org/10.19113/sdufenbed.791589

Abstract

Çalışmada, endüstriyel ısıl işlem uygulamasının dişbudak (Fraxinus excelsior) odununun boyutsal stabilite ve dinamik ıslatma özelliği üzerine etkisini incelemektir. ThermoWood prosesine göre 210 derece 120 dakika boyunca ısıl işlem görmüş Dişbudak numuneleri kullanılmıştır. Çalışmada 20x20x30 mm boyutlarına sahip 15 adet ısıl işlem görmüş numune 15 adet ısıl işlem görmemiş numune olmak üzere toplam 30 numune biçilmiş ve dinamik ıslatma özelliği ile boyutsal stabilite özellikleri incelenmiştir. Çalışmada elde edilen bulgular, ısıl işlem uygulaması ile birlikte ağaç malzemenin ıslanabilme özelliğinin azaldığını göstermiştir. Özellikle radyal kesite nazaran teğet kesitte boyutsal kararlılığın daha yüksek olduğu tespit edilmiştir. Ayrıca dinamik ıslatma özelliği ile boyutsal kararlılık arasında önemli bir korelasyon olduğu belirlenmiştir.

Supporting Institution

SDÜ BAP

Project Number

FDK-2019-6950

Thanks

Yazarlar, desteklerinden dolayı SDÜ Bap birimine teşekkür ederler.

References

  • [1] Özbalta, T., Çakmanus, İ. 2008. Sustainability in Buildings: Approaches to lifetime cost. Doğa Sectoral Publications, İstanbul.
  • [2] Korkut, S., Kocaefe, D. 2009. Effect of heat treatment on wood properties Düzce University Journal of Forestry, 5(2), 11-34.
  • [3] Mardiana, A., Riffat, S. B. 2015. Building energy consumption and carbon dioxide emissions: threat to climate change. Journal of Earth Science & Climatic Change, (S3), 1.
  • [4] Doğan, M., Seçme, D., Akten, M. 2018. Environmentally Friendly Buildings and Green Building Certificate Systems. Akademia Journal of Interdisciplinary Scientific Researches, 4(1), 19-27.
  • [5] Gürer, C., Akbulut, H., Kürklü, G. 2004. Recycling in the construction industry and re-evaluation of different building materials as a source of raw materials. V. Industrial Raw Materials Symposium, 28-36.
  • [6] Ramage, M. H., Burridge, H., Busse-Wicher, M., Fereday, G., Reynolds, T., Shah, D. U., Allwood, J.2017. The wood from the trees: The use of timber in construction. Renewable and Sustainable Energy Reviews, 68, 333-359.
  • [7] Karade, S. R. 2010. Cement-bonded composites from lignocellulosic wastes. Construction and building materials, 24(8), 1323-1330.
  • [8] Franek, J., Kollár, M., Makovíny, I. 2011. Microwave Electromagnetic Filed and Temperature Distribution in a Multilayered Wood-Cement Board. Journal of Electrical Engineering, 62(1), 25-30.
  • [9] Aras, U., Kalaycıoğlu, H. 2016. Wood Based Composites And Application Areas. International Refereed Journal of Engineering And Sciences, Sayı: 6, 120-136.Doi: 10.17366/UHMFD.2016616664.
  • [10] Akkılıç, H., Kaymakcı, A. Ünsal, Ö. 2014. Potential of thermally treated wood as external cladding, 7. National Roof & Facade Symposium, 3-4.
  • [11] Efe, F. T., Bal, B. C. 2016. Changes in Hardness Values of High Temperature Heat Treated Red Pine (Pinus brutia Ten.) Wood. AKÜ FEMÜBİD, 16, 79-86.
  • [12] Hill, CAS. 2006. Wood Modification: Chemical, Thermal and Other Processes, Wiley Series in Renewable Resources, John Wiley & Sons Inc., 260 pages, Chichester, UK. ISBN: 978-0-470-02172-9.
  • [13] Garcia, R. A., de Carvalho, A. M., de Figueiredo Latorraca, J. V., de Matos, J. L. M., Santos, W. A., de Medeiros Silva, R. F. 2012. Nondestructive evaluation of heat-treated Eucalyptus grandis Hill ex Maiden wood using stress wave method. Wood Science and Technology, 46(1-3), 41-52.
  • [14] Rapp, A.O. (Ed.)., 2001. Review of heat treatment of wood. In: Proceedings of COST E22 Environmental optimisation of wood protection. Antibes, France, pp.6.
  • [15] Esen, R., Özcan, C. 2012. Effects of heat treatment on adhesion resistance of oak (Quercus petraea L.) wood material. Turkish Journal of Forestry, 13(2), 150-154.
  • [16] Kocaefe, D., Poncsak, S., Doré, G., Younsi, R. 2008. Effect of heat treatment on the wettability of white ash and soft maple by water. Holz als roh-und werkstoff, 66(5), 355-361.
  • [17] Homan, W., Tjeerdsma, B., Beckers, E., Joressen, A. 2000. Structural and Other Properties of Modified Wood. Congress WCTE, Whistler, Canada 3.5.1-1–3.5.1.-8.
  • [18] Pavlo, B., Niemz, P. 2003. Effect of Temperature on Color and Strength of Spruce Wood. Holzforschung 57:539–546.
  • [19] Duchez, L., Herri, J.M., Guyonnet, R. 2001. Modelisation d’un Four de ´ Retification du Bois. In: Proceedings of 8i ´ eme Congr ` es franco- ` phone en Genie des Proc ´ ed´ es, Nancy, 17 au 19 Octobre 2001 ´ (Groupe ENSIC 2001), pp 61–68.
  • [20] Petrissans, M., Gerardin, P., El Bakali, I., Serraj, M. 2003. Wettability of Heat-Treated Wood. Holzforschung 57, 301–307.
  • [21] Hakkou, M., Petrissans, M., Zoulalian, A., Gerardin, P. 2005. Investigation of Wood Wettability Changes During Heat Treatment on the Basis of Chemical Analysis. Polym Degrad Stabil 89, 1–5.
  • [22] Kılınçarslan, Ş., Şimşek Türker, Y. 2019. Determination of Contact Angle Values of Heat-treated Spruce (Picea abies) Wood with Image Analysis Program. Biomed J Sci & Tech Res 18(4), DOI: 10.26717/BJSTR.2019.18.003183.
  • [23] Štrbová, M., Wesserle, F., Kúdela, J. 2013. Contact Angle Measurement on Wood by Drop Shape Analysis. In: Science for Sustainability. Györ – Sopron, University of West Hungary, p. 16–22.
  • [24] Cengiz, O. 2010. Contact Angle Measurement Device Design. University of İstanbul Graduate School of Natural and Applied Sciences, Mechanical Engineering Department, Master's Thesis, 83s.
  • [25] TS 4083, Determination of radial and tangential shrinkage in wood, TSE, Ankara.
  • [26] TS 4084, Determination of radial and tangential swelling in wood, TSE, Ankara.
  • [27] Altınok, M., Perçin, O., & Doruk, Ş. 2010. Investigation Of The Effect Of Heat Treatment (Thermo-Process) on The Technological Properties of Wood Materials. Unıversty of Dumlupınar, Graduate School of Natural and Applied Sciences, (023), 71-84.
  • [28] Bal, B. C., Bektaş, İ. 2018. Determination of density relation with some physical properties in beech and poplar wood. Furniture and Wood Materials Research Journal, 1(1), 1-10.
  • [29] Sernek, M 2002. Comparative analysis of inactivated wood surfaces, Doctoral Dissertation, Virginia Polytechnic Institute and State University, 179 pages.
  • [30] Hillis, W.E., 1984. High temperature and chemical effects on wood stability Part 1: general considerations. Wood Sci. Technol 18(4), 281-293.
  • [31] Kim, G.H., Yun, K.E., Kim, J.J., 1998. Effect of heat treatment on the decay resistance and bending properties of radiata pine sapwood. Material und Organismen, 32 (2), 101-108.
  • [32] Viitaniemi, P., 1997. ThermoWood - Modifi ed Wood for Improved Performance in: Proceedings of the 4th Eurowood Symposium Wood - The Ecological Material, Stockholm, Sweden, Trätek Rapport No. P9709084, pp. 67-69.
  • [33] Yıldız, S., 2002. Physical, mechanical and chemical properties of East beech and East spruce wood with heat treatment. K.T.Ü., Doctoral Thesis, 245s, Trabzon.
  • [34] Kamdem D.P., Pizzi A., Jermannaud A. 2002. Durability of heat-treated wood. Holz als RohundWerkstoff 60: 1-6.
  • [35] Bekhta, P. Niemz, P., 2003. Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 57(5), 539-546
  • [36] Ünsal, O., Ayrılmış, N., 2005. Variations in compression strength and surface roughness of heat-treated Turkish River Red Gum (Eucalyptus camaldulensis) wood. Journal of Wood Science, 51, 405-409.
  • [37] Akyıldız, M.H. Ateş, S., 2008. Effect of heat treatment on equilibrium moisture content (EMC) of some wood species in Turkey. Research Journal of Agriculture and Biological Sciences, 4 (6), 660-665.
  • [38] Aydemir, D. Gunduz, G. Altuntas, E. Ertas, M. Sahin, H.T. Alma, M.H., 2011. Investigating changes in the chemical constituents and dimensionalstability of heattreated hornbeam and Uludag fi r wood, BioResources 6(2), 1308-1321.
  • [39] Sahin Kol, H., 2010. Characteristics of heat-treated Turkish pine and fir wood after ThermoWood processing. J. Environ. Biol. 31(6), 1007-1011.
  • [40] Karlsson, O. Sidorava, E. Moren, T. 2011. Infl uence of heat transferring media on durability of thermally modifi ed wood. BioResources 6(1), 356-372.
  • [41] Poncsac, S., Kocaefe, D., Younsi, R. 2011. Improvement of the heat treatment of jack pine (Pinus banksiana) using ThermoWood technology. Eur. J. Wood Prod. 69(2), 281-286.
  • [42] Boonstra, M.J. 2008. A two-stage thermal modification of wood. Ph.D. dissertation in cosupervision Ghent University and Université Henry Poincaré - Nancy 1, 297 p. ISBN 978-90-5989-210-1.

The Effect of Industrial Heat Treatment on The Wettability and Dimensional Stability of Ash (Fraxinus excelsior) Wood

Year 2021, Volume: 25 Issue: 3, 473 - 480, 30.12.2021
https://doi.org/10.19113/sdufenbed.791589

Abstract

In this study is to examine the effect of industrial heat treatment application on the dimensional stability and dynamic wettability properties of ash (Fraxinus excelsior) wood. Ash samples that were heat treated for 120 minutes at 210 degrees according to the ThermoWood process were used. In this study, a total of 30 samples, including 15 heat treated samples with dimensions of 20x20x30 mm, and 15 unheat treated samples were cut and the dynamic wettability and dimensional stability properties were examined. The results obtained in the study showed that the wettability property of the wood material decreased with the application of heat treatment. It has been determined that the dimensional stability is higher especially in tangential section compared to radial section. It was also found that there is a significant correlation between dynamic wettability property and dimensional stability.

Project Number

FDK-2019-6950

References

  • [1] Özbalta, T., Çakmanus, İ. 2008. Sustainability in Buildings: Approaches to lifetime cost. Doğa Sectoral Publications, İstanbul.
  • [2] Korkut, S., Kocaefe, D. 2009. Effect of heat treatment on wood properties Düzce University Journal of Forestry, 5(2), 11-34.
  • [3] Mardiana, A., Riffat, S. B. 2015. Building energy consumption and carbon dioxide emissions: threat to climate change. Journal of Earth Science & Climatic Change, (S3), 1.
  • [4] Doğan, M., Seçme, D., Akten, M. 2018. Environmentally Friendly Buildings and Green Building Certificate Systems. Akademia Journal of Interdisciplinary Scientific Researches, 4(1), 19-27.
  • [5] Gürer, C., Akbulut, H., Kürklü, G. 2004. Recycling in the construction industry and re-evaluation of different building materials as a source of raw materials. V. Industrial Raw Materials Symposium, 28-36.
  • [6] Ramage, M. H., Burridge, H., Busse-Wicher, M., Fereday, G., Reynolds, T., Shah, D. U., Allwood, J.2017. The wood from the trees: The use of timber in construction. Renewable and Sustainable Energy Reviews, 68, 333-359.
  • [7] Karade, S. R. 2010. Cement-bonded composites from lignocellulosic wastes. Construction and building materials, 24(8), 1323-1330.
  • [8] Franek, J., Kollár, M., Makovíny, I. 2011. Microwave Electromagnetic Filed and Temperature Distribution in a Multilayered Wood-Cement Board. Journal of Electrical Engineering, 62(1), 25-30.
  • [9] Aras, U., Kalaycıoğlu, H. 2016. Wood Based Composites And Application Areas. International Refereed Journal of Engineering And Sciences, Sayı: 6, 120-136.Doi: 10.17366/UHMFD.2016616664.
  • [10] Akkılıç, H., Kaymakcı, A. Ünsal, Ö. 2014. Potential of thermally treated wood as external cladding, 7. National Roof & Facade Symposium, 3-4.
  • [11] Efe, F. T., Bal, B. C. 2016. Changes in Hardness Values of High Temperature Heat Treated Red Pine (Pinus brutia Ten.) Wood. AKÜ FEMÜBİD, 16, 79-86.
  • [12] Hill, CAS. 2006. Wood Modification: Chemical, Thermal and Other Processes, Wiley Series in Renewable Resources, John Wiley & Sons Inc., 260 pages, Chichester, UK. ISBN: 978-0-470-02172-9.
  • [13] Garcia, R. A., de Carvalho, A. M., de Figueiredo Latorraca, J. V., de Matos, J. L. M., Santos, W. A., de Medeiros Silva, R. F. 2012. Nondestructive evaluation of heat-treated Eucalyptus grandis Hill ex Maiden wood using stress wave method. Wood Science and Technology, 46(1-3), 41-52.
  • [14] Rapp, A.O. (Ed.)., 2001. Review of heat treatment of wood. In: Proceedings of COST E22 Environmental optimisation of wood protection. Antibes, France, pp.6.
  • [15] Esen, R., Özcan, C. 2012. Effects of heat treatment on adhesion resistance of oak (Quercus petraea L.) wood material. Turkish Journal of Forestry, 13(2), 150-154.
  • [16] Kocaefe, D., Poncsak, S., Doré, G., Younsi, R. 2008. Effect of heat treatment on the wettability of white ash and soft maple by water. Holz als roh-und werkstoff, 66(5), 355-361.
  • [17] Homan, W., Tjeerdsma, B., Beckers, E., Joressen, A. 2000. Structural and Other Properties of Modified Wood. Congress WCTE, Whistler, Canada 3.5.1-1–3.5.1.-8.
  • [18] Pavlo, B., Niemz, P. 2003. Effect of Temperature on Color and Strength of Spruce Wood. Holzforschung 57:539–546.
  • [19] Duchez, L., Herri, J.M., Guyonnet, R. 2001. Modelisation d’un Four de ´ Retification du Bois. In: Proceedings of 8i ´ eme Congr ` es franco- ` phone en Genie des Proc ´ ed´ es, Nancy, 17 au 19 Octobre 2001 ´ (Groupe ENSIC 2001), pp 61–68.
  • [20] Petrissans, M., Gerardin, P., El Bakali, I., Serraj, M. 2003. Wettability of Heat-Treated Wood. Holzforschung 57, 301–307.
  • [21] Hakkou, M., Petrissans, M., Zoulalian, A., Gerardin, P. 2005. Investigation of Wood Wettability Changes During Heat Treatment on the Basis of Chemical Analysis. Polym Degrad Stabil 89, 1–5.
  • [22] Kılınçarslan, Ş., Şimşek Türker, Y. 2019. Determination of Contact Angle Values of Heat-treated Spruce (Picea abies) Wood with Image Analysis Program. Biomed J Sci & Tech Res 18(4), DOI: 10.26717/BJSTR.2019.18.003183.
  • [23] Štrbová, M., Wesserle, F., Kúdela, J. 2013. Contact Angle Measurement on Wood by Drop Shape Analysis. In: Science for Sustainability. Györ – Sopron, University of West Hungary, p. 16–22.
  • [24] Cengiz, O. 2010. Contact Angle Measurement Device Design. University of İstanbul Graduate School of Natural and Applied Sciences, Mechanical Engineering Department, Master's Thesis, 83s.
  • [25] TS 4083, Determination of radial and tangential shrinkage in wood, TSE, Ankara.
  • [26] TS 4084, Determination of radial and tangential swelling in wood, TSE, Ankara.
  • [27] Altınok, M., Perçin, O., & Doruk, Ş. 2010. Investigation Of The Effect Of Heat Treatment (Thermo-Process) on The Technological Properties of Wood Materials. Unıversty of Dumlupınar, Graduate School of Natural and Applied Sciences, (023), 71-84.
  • [28] Bal, B. C., Bektaş, İ. 2018. Determination of density relation with some physical properties in beech and poplar wood. Furniture and Wood Materials Research Journal, 1(1), 1-10.
  • [29] Sernek, M 2002. Comparative analysis of inactivated wood surfaces, Doctoral Dissertation, Virginia Polytechnic Institute and State University, 179 pages.
  • [30] Hillis, W.E., 1984. High temperature and chemical effects on wood stability Part 1: general considerations. Wood Sci. Technol 18(4), 281-293.
  • [31] Kim, G.H., Yun, K.E., Kim, J.J., 1998. Effect of heat treatment on the decay resistance and bending properties of radiata pine sapwood. Material und Organismen, 32 (2), 101-108.
  • [32] Viitaniemi, P., 1997. ThermoWood - Modifi ed Wood for Improved Performance in: Proceedings of the 4th Eurowood Symposium Wood - The Ecological Material, Stockholm, Sweden, Trätek Rapport No. P9709084, pp. 67-69.
  • [33] Yıldız, S., 2002. Physical, mechanical and chemical properties of East beech and East spruce wood with heat treatment. K.T.Ü., Doctoral Thesis, 245s, Trabzon.
  • [34] Kamdem D.P., Pizzi A., Jermannaud A. 2002. Durability of heat-treated wood. Holz als RohundWerkstoff 60: 1-6.
  • [35] Bekhta, P. Niemz, P., 2003. Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 57(5), 539-546
  • [36] Ünsal, O., Ayrılmış, N., 2005. Variations in compression strength and surface roughness of heat-treated Turkish River Red Gum (Eucalyptus camaldulensis) wood. Journal of Wood Science, 51, 405-409.
  • [37] Akyıldız, M.H. Ateş, S., 2008. Effect of heat treatment on equilibrium moisture content (EMC) of some wood species in Turkey. Research Journal of Agriculture and Biological Sciences, 4 (6), 660-665.
  • [38] Aydemir, D. Gunduz, G. Altuntas, E. Ertas, M. Sahin, H.T. Alma, M.H., 2011. Investigating changes in the chemical constituents and dimensionalstability of heattreated hornbeam and Uludag fi r wood, BioResources 6(2), 1308-1321.
  • [39] Sahin Kol, H., 2010. Characteristics of heat-treated Turkish pine and fir wood after ThermoWood processing. J. Environ. Biol. 31(6), 1007-1011.
  • [40] Karlsson, O. Sidorava, E. Moren, T. 2011. Infl uence of heat transferring media on durability of thermally modifi ed wood. BioResources 6(1), 356-372.
  • [41] Poncsac, S., Kocaefe, D., Younsi, R. 2011. Improvement of the heat treatment of jack pine (Pinus banksiana) using ThermoWood technology. Eur. J. Wood Prod. 69(2), 281-286.
  • [42] Boonstra, M.J. 2008. A two-stage thermal modification of wood. Ph.D. dissertation in cosupervision Ghent University and Université Henry Poincaré - Nancy 1, 297 p. ISBN 978-90-5989-210-1.
There are 42 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Şemsettin Kılınçarslan 0000-0001-8253-9357

Yasemin Şimşek Türker 0000-0002-3080-0215

Project Number FDK-2019-6950
Publication Date December 30, 2021
Published in Issue Year 2021 Volume: 25 Issue: 3

Cite

APA Kılınçarslan, Ş., & Şimşek Türker, Y. (2021). The Effect of Industrial Heat Treatment on The Wettability and Dimensional Stability of Ash (Fraxinus excelsior) Wood. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(3), 473-480. https://doi.org/10.19113/sdufenbed.791589
AMA Kılınçarslan Ş, Şimşek Türker Y. The Effect of Industrial Heat Treatment on The Wettability and Dimensional Stability of Ash (Fraxinus excelsior) Wood. J. Nat. Appl. Sci. December 2021;25(3):473-480. doi:10.19113/sdufenbed.791589
Chicago Kılınçarslan, Şemsettin, and Yasemin Şimşek Türker. “The Effect of Industrial Heat Treatment on The Wettability and Dimensional Stability of Ash (Fraxinus Excelsior) Wood”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25, no. 3 (December 2021): 473-80. https://doi.org/10.19113/sdufenbed.791589.
EndNote Kılınçarslan Ş, Şimşek Türker Y (December 1, 2021) The Effect of Industrial Heat Treatment on The Wettability and Dimensional Stability of Ash (Fraxinus excelsior) Wood. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25 3 473–480.
IEEE Ş. Kılınçarslan and Y. Şimşek Türker, “The Effect of Industrial Heat Treatment on The Wettability and Dimensional Stability of Ash (Fraxinus excelsior) Wood”, J. Nat. Appl. Sci., vol. 25, no. 3, pp. 473–480, 2021, doi: 10.19113/sdufenbed.791589.
ISNAD Kılınçarslan, Şemsettin - Şimşek Türker, Yasemin. “The Effect of Industrial Heat Treatment on The Wettability and Dimensional Stability of Ash (Fraxinus Excelsior) Wood”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25/3 (December 2021), 473-480. https://doi.org/10.19113/sdufenbed.791589.
JAMA Kılınçarslan Ş, Şimşek Türker Y. The Effect of Industrial Heat Treatment on The Wettability and Dimensional Stability of Ash (Fraxinus excelsior) Wood. J. Nat. Appl. Sci. 2021;25:473–480.
MLA Kılınçarslan, Şemsettin and Yasemin Şimşek Türker. “The Effect of Industrial Heat Treatment on The Wettability and Dimensional Stability of Ash (Fraxinus Excelsior) Wood”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 25, no. 3, 2021, pp. 473-80, doi:10.19113/sdufenbed.791589.
Vancouver Kılınçarslan Ş, Şimşek Türker Y. The Effect of Industrial Heat Treatment on The Wettability and Dimensional Stability of Ash (Fraxinus excelsior) Wood. J. Nat. Appl. Sci. 2021;25(3):473-80.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.