Zeolit Üzerine Desteklenmiş Fe Katkılı TiO2 üzerinde İndigo Boyasının Fotobozunmasının Araştırılması
Year 2021,
Volume: 25 Issue: 3, 548 - 557, 30.12.2021
Selda Topçu Şendoğdular
,
Levent Şendoğdular
Abstract
Çevre kirliliği ve yenilenebilir enerji üretimi gibi fotokatalitik uygulamalarda yüksek etkinliği nedeniyle, titanyum dioksit (TiO2), katkılı/katkısız fotokatalizör malzeme olarak kullanım yaygınlığı ile öne çıkmaktadır. Uygulama ortamında homojenliği ve kontrollü dağılımı sağlayabilmek adına boşluk boyutu elverişli olan bir zeolit mineraline emdirilmesiyle TiO2 ve katkı malzemesinin faz dağılımı hassas bir şekilde kontrol edilebilmektedir. Bu nedenle bu çalışma zeolit mineralinin içinde ki demir (Fe) katkılı TiO2’nın indigo boyasında ki fotokatalitik özelliklerinin tayinini içermektedir. Bu nedenle Fe katkılı TiO2’in zeolit’e emdirilmesiyle elde edilen nanotozlardan sol-jel tekniği kullanılarak viskoz bir çözelti elde edilmiştir. Hazırlanan kompozitlerin yapısı X-ışını difraksiyonu (XRD) ve taramalı elektron mikroskobu (SEM) ile karakterize edilmiştir. TiO2’in ışığı soğurma aralığının Fe katkısı ve zeolit’e emdirilmesi ile görünür ışık bölgesine genişletilebileceği UV-Vis Spektrofotometre çalışmaları ile belirlenmiştir. Hazırlanan tozların görünür ışık fotokatalitik aktiviteleri indigo boyansının bozunma çalışmaları ile saptanmıştır. TiO2, zeolit ve TiO2/zeolit nanotozları ile karşılaştırıldığında Fe katkılı-TiO2/zeolit nanotozlarının en yüksek fotokatalitik aktiviteye sahip olduğu gösterilmiştir. Çalışma sonucunda Fe katkılı TiO2’nun zeolitin yapısına emdirilmesi ile TiO2 nanotozunun optik özeliklerinin optimize edilebildiği anlaşılmıştır.
Supporting Institution
Tübitak BİDEB VE Erciyes Üniversitesi BAP
Project Number
FKB-2019-9139
Thanks
Bu çalışma, TÜBİTAK BİDEB ve Erciyes Üniversitesi, Bilimsel Araştırma Projeler Birimi (BAP) (Proje no: FKB-2019-9139) tarafından desteklenmiştir.
References
- [1] Shayegan, Z., Lee C., Haghighat, F., 2018. TiO2 photocatalyst for removal of volatile organic compounds in gas phase – A review, Chemical Engineering Journal, 334(15), 2408-2439.
- [2] O'Regan, B., Grätzel, M., 1991. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353, 737–740.
- [3] Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., Grimes, C.A., 2006. A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications, Solar Energy Materials and Solar Cells, 90, (14),2011-2075.
- [4] Kwon, D.K., Kim, K.M., Jang, H.H., Jeon, J.M., Lee,M.H., Kim, G.H., Li, X., Park, G., Lee, B., Han, S.,Kim, M., Hwang,C.S., 2010. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory, Nature Nanotechnology 5, 148–153.
- [5] Bai, J., Zhou, B., 2014. Titanium Dioxide Nanomaterials for Sensor Applications, Chem. Rev., 114, (19),10131–10176.
- [6] Kesmez, Ö., Camurlu, H.E., Burunkaya, E., Arpac, E., 2009. Sol–gel preparation and characterization of anti-reflective and self-cleaning SiO2–TiO2 double-layer nanometric films, Solar Energy Materials & Solar Cells 93, 1833–183.
- [7] Nagi, S., Inturi, R., Boningari, T., Suidan, M., Smirniotis, P.G., 2017. Visible-light-induced photodegradation of gas phase acetonitrile using aerosol- made transition metal (V, Cr, Fe Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO2, Applied Catalysis B Environmental, 144, 333-342.
- [8] Tobaldi, D.M., Pullar, İ.R.C., SeverŠkapin, A., Seabra, M.P., Labrincha, J.A., 2014. Visible light activated photocatalytic behaviour of rare earth modified commercial TiO2, Materials Research Bulletin, 50, 183-190.
- [9] Khan, R., Kim, S.W., Kim, T., Nam, C., 2008. Comparative study of the Photocatalytic performance of boron–iron Co-doped and boron-doped TiO2 nanoparticles, Materials Chemistry and Physics, 112(1), 167-172
- [10] Li, Y., Xu, D., Oh, J., Shen,W., Li, X., Yu,Y., 2012. Mechanistic Study of Codoped Titania with Nonmetal and Metal Ions: A Case of C + Mo Codoped TiO2 , ACS Catalysis, 2(3), 391–398.
- [11] Razmjou, A., Mansouri, J., Chen, V., 2011. The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes, Journal of Membrane Science, 378(1–2), 73-84.
- [12] Parka, H., Park, Y., Kim,W., Choi, W., 2013. Surface modification of TiO2 photocatalyst for environmental applications, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 15, 1– 20.
- [13] Yum, J., Walter, P., Huber, S., Rentsch, D., Geiger, T., Nüesch, F., Angelis, F., Grätzel, M., Nazeeruddin, M.K., 2007. Efficient Far Red Sensitization of Nanocrystalline TiO2 Films by an Unsymmetrical Squaraine Dye, Journal of American Chemical Society, 129(34), 10320–10321.
- [14] Yurtsever, H.A., Çiftçioğlu, M., 2015. Demir ve Nikel Birlikte Katkılı Titanyum dioksit İnce Filmlerin Görünür Işık Fotokatalitik Aktiviteleri, Adıyaman Üniversitesi Fen Bilimleri Dergisi, 5(2), 163-177.
- [15] Yu, J., Xiang, Q., Zhou, M., 2009. Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures , 90(3–4), 595-602.
- [16] Zhu, J., Chen, F., Zhang, J., Chen, H., Anpo, M., 2006. Fe+3-TiO2 photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization, Journal of Photochemistry andPhotobiology A: Chemistry, 180(1–2), 196-204.
- [17] Moradi, H., Eshaghi, A., Hosseini ,S.Y., Ghani,K., 2016. Fabrication of Fe-doped TiO2 nanoparticles and investigation of photocatalytic decolorization of reactive red 198 under visible light irradiation, Ultrasonics Sonochemistry, 32, 314–319.
- [18] Zhang, Y., Deng, S., Sun, B., Xiao,H., Li, L., Yang, G., Hui, Q., Wu, J., Zheng, J., 2010. Preparation of TiO2-loaded activated carbon fiber hybrids and application in a pulsed discharge reactor for decomposition of methyl orange, Journal of Colloid and Interface Science, 34(2), 260–266.
- [19] Hofstadler, K., Bauer, R., Novalic, S., Heisler, G., 1994. New reactor design for photocatalytic wastewater treatment with TiO2 immobilized on fused-silica glass fibers: photomineralization of 4-chlorophenol, Environmental Science Technology, 28(4), 670-674.
- [20] Yoneyama, H., Haga, S., Yamanaka, S., 1989. Photocatalytic activities of microcrystalline TiO2 incorporated in sheet silicates of clay, The Journal of Physical Chemistry, 93, 4833–483
- [21] Tanguay, J.F., Suib Robert, S.L., Coughlin, R.W., 1989. Dichloromethane photodegradation using titanium catalysts, Journal of Catalysis, 1127(2), 335-347.
- [22] Ökte, A.N., Sayınsöz, E., 2008. Characterization and Photocatalytic activity of TiO2 supported sepiolite catalysts, Purification. Technology., 62, 535.
- [23] Takeuchi, M., Kimura, T., Hidaka, M., Rakhmawaty, D., Anpo, M., 2007. Photocatalytic oxidation of acetaldehyde with oxygen on TiO2/ZSM-5 photocatalysts: Effect of hydrophobicity of zeolites, Journal Catalysis, 246, 235-240.
- [24] Dubey, N., Rayalu, S.S., Labhsetwar, N.K., Naidu, R.R., Chatti, R.V., Devotta, S., 2006. Photocatalytic properties of zeolite-based materials for the photoreduction of methyl orange”, Applied Catalysis A: General, 303(2), 152-157.
- [25] Liu, X., Iu, K.-K., Thomas, J. K., 1993. Preparation, characterization and photoreactivity of titanium(IV) oxide encapsulated in zeolites,” Journal of the Chemical Society, Faraday Transactions, 89(11), 1861–1865
- [26] Wang, C., Shi, H., Li, Y., 2012. Synthesis and characterization of natural zeolite supported Cr-doped TiO2 photocatalysts, Applied Surface Science, 258(10), 4328-433.
- [27] He, C., Tian, B., Zhang, J., 2010. Thermally stable SiO2-doped mesoporous anatase TiO2 with large surface area and excellent photocatalytic activity, Journal of Colloid and Interface Science, 344(2), 382-389
- [28] Wang, C.C., Lee, C., Lyu, M., Juang, L., 2008. Photocatalytic degradation of C.I. Basic Violet 10 using TiO2 catalysts supported by Y zeolite: An investigation of the effects of operational parameters, Dyes and igments, 76(3), 817-824.
- [29] Najafabadi, A.T., Taghipour, F., 2012. Cobalt precursor role in the photocatalytic activity of the Zeolite supported TiO2-based photocatalysts under visible light: A promising tool toward zeolite-based core–shellphotocatalysis, Journal of Photochemistry and Photobiology A: Chemistry, 248, 1-7.
- [30] Cronstedt, A.F., 1756. Rön och beskrifning om en obekant bärg art, som kallas Zeolites, Akademeins. Handlingar, Stockholm 18, 120s.
- [31] Steingruber, Elmar, 2004. Indigo and Indigo Colorants, Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. ,151s
- [32] M. Sanchez Del Rio, P. Martinetto, C. Reyes-Valerio,E. Dooryhee and M. Suarez, 2006. Synthesis and Acid resistance of maya blue pigment, 48(1), 115.
- [33] R. Kleber, R. Masschelein-Kleiner and J. Thissen, 1967. Etude et Identification du 'Bleu Maya, Stud. Conserv., 12(2), 41.
- [34] G. Chiari, R. Giustetto and G. Ricchiardi, Eur. J. Mineral., 2003. Crystal structure refinements of palygorskite and Maya Blue from molecular modelling and powder synchrotron diffraction 15(1), 21.
- [35] Zixin Ju, Jie Sun and Yanping Liu, 2019. Molecular Structures and Spectral Properties of Natural Indigo and Indirubin: Experimental and DFT Studies, Molecules, 24, 9831.
- [36] D. Reinen, P. Kohl and C. Muller, Z. Anorg. Allg. Chem., 2004. The Nature of the Colour Centres in ‘Maya Blue’ — the Incorporation of Organic Pigment Molecules into the Palygorskite Lattice, 630, 97.
- [37] Izadyar, S., Fatemi, S., 2013. Fabrication of X Zeolite Based Modified Nano TiO2 Photocatalytic Paper for Removal of VOC Pollutants under Visible Light, Ind. Eng. Chem. Res., 52(32,) 10961-10968.
- [38] Zhu, J., Zheng, W., He, B., Zhang, J., Anpo, M., 2004. Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water, Journal of Molecular Catalysis A: Chemical, 216(1),35-43.
- [39] Khatamian, M., Hashemian, S., Yavari, A., Saket, M., 2012. Preparation of metal ion (Fe+3 and Ni+2) doped TiO2 nanoparticles supported on ZSM-5 zeolite and investigation of its photocatalytic activity, Materials Science and Engineering: B, 177(18), 1623-1627.
- [40] Corma A. and Davis M. E. 2004. Issues in The Synthesis of Crystalline Molecular Sieves: Towards The Crystallization of Low Framework-Density Structures, Chem. Phys., 5(3), 304–313.
- [41] Alyüz B., Veli, S. 2005. Ağır Metal İçeren Atık Su Arıtımında Kullanılan Düşük Maliyetli Adosorbentler’ Mühendislik ve Fen Bilimleri Dergisi, 23(3), 94-105.
- [42] Worayingyong, A., Sang-urai, S., Smith, M. F., Maensiri, S. and Seraphin, S. 2014. Effects of Cerium Dopant Concentration on Structural Properties and Photocatalytic Activity of Electrospun Ce-doped TiO2 Nanofibers’, Applied Physics A: Materials Science and Processing, 117(3), 1191–1201.
- [43] Cundy C. S. and Cox P. A. 2005. The Hydrothermal Synthesis of Zeolites: Precursors, İntermediates and Reaction Mechanism, Microporous Mesoporous Mater., 82(1–2), 1–78.
- [44] A.Yalcukand G.Dogdu Okcu, 2017. Biosorption of Indigo and Acid Yellow 2G (Y2G) dyes from aqueous solutions using a commercial powder form of ecologically pure Hawaiian Spirulina pacifica (HSP), Desalination and Water Treatment, 79, 386-399.
- [45] S. Hammami, M.A. Oturan, N. Oturan, N. Bellakhaland, M.Dachraoui, 2012 Comparative mineralization of textile dye indigo by photo-Fenton process and anodic oxidation using boron-doped diamond anode, Desalination and Water Treatment, 45, 297–304.
- [46] C.F. Couto, L.S. Marques, J. Balmant, A.P. de Oliveira Maia, W.G. Moravia, M. Cristinaand S. Amaral, 2018. Hybrid MF and membrane bioreactor process applied towards water and indigo reuse from denim textile wastewater, Environmental Technology, 39(6), 725-738.
- [47] A.M. Chiaand I.R. Musa, 2014. Effect of indigo dye effluent on the growth, biomass production and phenotypic plasticity of Scenedesmus quadricauda (Chlorococcales), Anais da Academia Brasileira de Ciências, 86(1), 419-428.
- [48] A. Trujillo-Ortega, S.A. Martinez Delgadillo, V.X. Mendoza-Escamilla, M. May-Lozanoand C. Barrera-Diaz, 2013. Modeling the removal of indigo dye from aqueous media in a sonoelectrochemical flow reactor, International Journal of Electrochemical Science, 8(3), 3876–3887.
- [49] Zolgharneinand M. Rastgordani, 2018. Optimization of simultaneous removal of binary mixture of indigo carmine and methyl orange dyes by cobalt hydroxide nano-particles through Taguchi method, Journal of Molecular Liquids, 262, 405-414.
- [50] Li, Z., 1999. Sorption Kinetics of Hexadecyl trimethylammonium on Natural Clinoptilolite, Langmuir, 15, 6438-6445.
- [51] Kumar, K. V., Porkodi, K. and Rocha, F., 2008. Langmuir–Hinshelwood kinetics – A theoretical study, Catalysis Communications, 9, 82–84.
- [52] Atheel Hassan Alwash, Ahmad Zuhairi Abdullah, and Norli Ismail, 2013. La Loaded TiO2 Encapsulated Zeolite Y Catalysts: Investigating the Characterization and Decolorization Process of Amaranth Dye, Journal of Engineering, 407167.
- [53] Nasrin Aghajari, Zahra Ghasemi, Habibollah Younesi, Nader Bahramifar, 2019. Synthesis, characterization and photocatalytic applicati on of Ag-doped Fe-ZSM-5@TiO2 nanocomposite for degradation of reactivered 195 (RR 195) in aqueous environment under sunlight irradiation, Journal of Environmental Health Science and Engineering, 17, 219–232.
- [54] Znad, Hussein, Abbas, Khalid, Hena, Sufia Awual, Awual, Md. Rabiul, 2018. Synthesis a novel multilamellar mesoporous TiO2/ZSM-5 for photo-catalytic degradation of methyl orange dye in aqueous media” Journal of Environmental Chemical Engineering, 6(1), 218-227.
- [55] Ghasemi Z, Younesi H, Zinatizadeh AA., 2016. Preparation, characterization and photocatalytic application of TiO2/Fe-ZSM-5 nanocomposite for the treatment of petroleum refinery wastewater: optimization of process parameters by response surface methodology, Chemosphere, 159, 552–64.
- [56] Ghasemi Z, Younesi H, Zinatizadeh AA., 2016. Kinetics and thermodynamics of photocatalytic degradation of organic pollutants in petroleum refinery wastewater over nano-TiO2 supported on Fe-ZSM-5, Journal of the Taiwan Institude Chemical Engineers, 65, 357–66.
- [57] N. Musee, 2011. Nanowastes and the environment: Potential new waste management paradigim, Environment International, 37(1), 112-128.
Investigation of Photodegradation of Indıgo Dye on Fe Doped TiO2 Supported with Zeolite
Year 2021,
Volume: 25 Issue: 3, 548 - 557, 30.12.2021
Selda Topçu Şendoğdular
,
Levent Şendoğdular
Abstract
Due to its high efficiency in photocatalytic applications such as environmental pollution and renewable energy production, titanium dioxide (TiO2) stands out with its widespread use as a doped / undoped photocatalyst material. In order to ensure homogeneity and controlled distribution in the application environment, the phase distribution of the TiO2 and the additive material can be precisely controlled with the support of the zeolite A mineral whose gap size is suitable. TiO2 supported zeolite photocatalysts loaded with Fe ions prepared by sol-gel method and it was aimed to investigate the effects of photocatalytic activity under visible light on indigo dye. Therefore, this study includes the determination of photocatalytic properties of zeolite / iron (Fe) doped TiO2 in indigo dye. Using the sol-gel technique, a viscous solution was obtained from the nanopowder obtained. The structures of prepared composites were characterized by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). It has been determined by UV-Vis Spectrophotometer studies that the light absorption range of TiO2 can be extended to the visible light region with Fe contribution and zeolite support. Visible light photocatalytic activities of the prepared powders were determined by the degradation studies of the indigo dye. Compared to TiO2, zeolite and TiO2 / zeolite nanopowder, Fe doped-TiO2/zeolite nanopowder has 99% degradation after 120 hours and has the highest photocatalytic activity. As a result of the study, it was understood that the optical properties of TiO2 nanopowder could be optimized with the support of Fe doped TiO2 and zeolite.
Project Number
FKB-2019-9139
References
- [1] Shayegan, Z., Lee C., Haghighat, F., 2018. TiO2 photocatalyst for removal of volatile organic compounds in gas phase – A review, Chemical Engineering Journal, 334(15), 2408-2439.
- [2] O'Regan, B., Grätzel, M., 1991. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353, 737–740.
- [3] Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., Grimes, C.A., 2006. A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications, Solar Energy Materials and Solar Cells, 90, (14),2011-2075.
- [4] Kwon, D.K., Kim, K.M., Jang, H.H., Jeon, J.M., Lee,M.H., Kim, G.H., Li, X., Park, G., Lee, B., Han, S.,Kim, M., Hwang,C.S., 2010. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory, Nature Nanotechnology 5, 148–153.
- [5] Bai, J., Zhou, B., 2014. Titanium Dioxide Nanomaterials for Sensor Applications, Chem. Rev., 114, (19),10131–10176.
- [6] Kesmez, Ö., Camurlu, H.E., Burunkaya, E., Arpac, E., 2009. Sol–gel preparation and characterization of anti-reflective and self-cleaning SiO2–TiO2 double-layer nanometric films, Solar Energy Materials & Solar Cells 93, 1833–183.
- [7] Nagi, S., Inturi, R., Boningari, T., Suidan, M., Smirniotis, P.G., 2017. Visible-light-induced photodegradation of gas phase acetonitrile using aerosol- made transition metal (V, Cr, Fe Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO2, Applied Catalysis B Environmental, 144, 333-342.
- [8] Tobaldi, D.M., Pullar, İ.R.C., SeverŠkapin, A., Seabra, M.P., Labrincha, J.A., 2014. Visible light activated photocatalytic behaviour of rare earth modified commercial TiO2, Materials Research Bulletin, 50, 183-190.
- [9] Khan, R., Kim, S.W., Kim, T., Nam, C., 2008. Comparative study of the Photocatalytic performance of boron–iron Co-doped and boron-doped TiO2 nanoparticles, Materials Chemistry and Physics, 112(1), 167-172
- [10] Li, Y., Xu, D., Oh, J., Shen,W., Li, X., Yu,Y., 2012. Mechanistic Study of Codoped Titania with Nonmetal and Metal Ions: A Case of C + Mo Codoped TiO2 , ACS Catalysis, 2(3), 391–398.
- [11] Razmjou, A., Mansouri, J., Chen, V., 2011. The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes, Journal of Membrane Science, 378(1–2), 73-84.
- [12] Parka, H., Park, Y., Kim,W., Choi, W., 2013. Surface modification of TiO2 photocatalyst for environmental applications, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 15, 1– 20.
- [13] Yum, J., Walter, P., Huber, S., Rentsch, D., Geiger, T., Nüesch, F., Angelis, F., Grätzel, M., Nazeeruddin, M.K., 2007. Efficient Far Red Sensitization of Nanocrystalline TiO2 Films by an Unsymmetrical Squaraine Dye, Journal of American Chemical Society, 129(34), 10320–10321.
- [14] Yurtsever, H.A., Çiftçioğlu, M., 2015. Demir ve Nikel Birlikte Katkılı Titanyum dioksit İnce Filmlerin Görünür Işık Fotokatalitik Aktiviteleri, Adıyaman Üniversitesi Fen Bilimleri Dergisi, 5(2), 163-177.
- [15] Yu, J., Xiang, Q., Zhou, M., 2009. Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures , 90(3–4), 595-602.
- [16] Zhu, J., Chen, F., Zhang, J., Chen, H., Anpo, M., 2006. Fe+3-TiO2 photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization, Journal of Photochemistry andPhotobiology A: Chemistry, 180(1–2), 196-204.
- [17] Moradi, H., Eshaghi, A., Hosseini ,S.Y., Ghani,K., 2016. Fabrication of Fe-doped TiO2 nanoparticles and investigation of photocatalytic decolorization of reactive red 198 under visible light irradiation, Ultrasonics Sonochemistry, 32, 314–319.
- [18] Zhang, Y., Deng, S., Sun, B., Xiao,H., Li, L., Yang, G., Hui, Q., Wu, J., Zheng, J., 2010. Preparation of TiO2-loaded activated carbon fiber hybrids and application in a pulsed discharge reactor for decomposition of methyl orange, Journal of Colloid and Interface Science, 34(2), 260–266.
- [19] Hofstadler, K., Bauer, R., Novalic, S., Heisler, G., 1994. New reactor design for photocatalytic wastewater treatment with TiO2 immobilized on fused-silica glass fibers: photomineralization of 4-chlorophenol, Environmental Science Technology, 28(4), 670-674.
- [20] Yoneyama, H., Haga, S., Yamanaka, S., 1989. Photocatalytic activities of microcrystalline TiO2 incorporated in sheet silicates of clay, The Journal of Physical Chemistry, 93, 4833–483
- [21] Tanguay, J.F., Suib Robert, S.L., Coughlin, R.W., 1989. Dichloromethane photodegradation using titanium catalysts, Journal of Catalysis, 1127(2), 335-347.
- [22] Ökte, A.N., Sayınsöz, E., 2008. Characterization and Photocatalytic activity of TiO2 supported sepiolite catalysts, Purification. Technology., 62, 535.
- [23] Takeuchi, M., Kimura, T., Hidaka, M., Rakhmawaty, D., Anpo, M., 2007. Photocatalytic oxidation of acetaldehyde with oxygen on TiO2/ZSM-5 photocatalysts: Effect of hydrophobicity of zeolites, Journal Catalysis, 246, 235-240.
- [24] Dubey, N., Rayalu, S.S., Labhsetwar, N.K., Naidu, R.R., Chatti, R.V., Devotta, S., 2006. Photocatalytic properties of zeolite-based materials for the photoreduction of methyl orange”, Applied Catalysis A: General, 303(2), 152-157.
- [25] Liu, X., Iu, K.-K., Thomas, J. K., 1993. Preparation, characterization and photoreactivity of titanium(IV) oxide encapsulated in zeolites,” Journal of the Chemical Society, Faraday Transactions, 89(11), 1861–1865
- [26] Wang, C., Shi, H., Li, Y., 2012. Synthesis and characterization of natural zeolite supported Cr-doped TiO2 photocatalysts, Applied Surface Science, 258(10), 4328-433.
- [27] He, C., Tian, B., Zhang, J., 2010. Thermally stable SiO2-doped mesoporous anatase TiO2 with large surface area and excellent photocatalytic activity, Journal of Colloid and Interface Science, 344(2), 382-389
- [28] Wang, C.C., Lee, C., Lyu, M., Juang, L., 2008. Photocatalytic degradation of C.I. Basic Violet 10 using TiO2 catalysts supported by Y zeolite: An investigation of the effects of operational parameters, Dyes and igments, 76(3), 817-824.
- [29] Najafabadi, A.T., Taghipour, F., 2012. Cobalt precursor role in the photocatalytic activity of the Zeolite supported TiO2-based photocatalysts under visible light: A promising tool toward zeolite-based core–shellphotocatalysis, Journal of Photochemistry and Photobiology A: Chemistry, 248, 1-7.
- [30] Cronstedt, A.F., 1756. Rön och beskrifning om en obekant bärg art, som kallas Zeolites, Akademeins. Handlingar, Stockholm 18, 120s.
- [31] Steingruber, Elmar, 2004. Indigo and Indigo Colorants, Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. ,151s
- [32] M. Sanchez Del Rio, P. Martinetto, C. Reyes-Valerio,E. Dooryhee and M. Suarez, 2006. Synthesis and Acid resistance of maya blue pigment, 48(1), 115.
- [33] R. Kleber, R. Masschelein-Kleiner and J. Thissen, 1967. Etude et Identification du 'Bleu Maya, Stud. Conserv., 12(2), 41.
- [34] G. Chiari, R. Giustetto and G. Ricchiardi, Eur. J. Mineral., 2003. Crystal structure refinements of palygorskite and Maya Blue from molecular modelling and powder synchrotron diffraction 15(1), 21.
- [35] Zixin Ju, Jie Sun and Yanping Liu, 2019. Molecular Structures and Spectral Properties of Natural Indigo and Indirubin: Experimental and DFT Studies, Molecules, 24, 9831.
- [36] D. Reinen, P. Kohl and C. Muller, Z. Anorg. Allg. Chem., 2004. The Nature of the Colour Centres in ‘Maya Blue’ — the Incorporation of Organic Pigment Molecules into the Palygorskite Lattice, 630, 97.
- [37] Izadyar, S., Fatemi, S., 2013. Fabrication of X Zeolite Based Modified Nano TiO2 Photocatalytic Paper for Removal of VOC Pollutants under Visible Light, Ind. Eng. Chem. Res., 52(32,) 10961-10968.
- [38] Zhu, J., Zheng, W., He, B., Zhang, J., Anpo, M., 2004. Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water, Journal of Molecular Catalysis A: Chemical, 216(1),35-43.
- [39] Khatamian, M., Hashemian, S., Yavari, A., Saket, M., 2012. Preparation of metal ion (Fe+3 and Ni+2) doped TiO2 nanoparticles supported on ZSM-5 zeolite and investigation of its photocatalytic activity, Materials Science and Engineering: B, 177(18), 1623-1627.
- [40] Corma A. and Davis M. E. 2004. Issues in The Synthesis of Crystalline Molecular Sieves: Towards The Crystallization of Low Framework-Density Structures, Chem. Phys., 5(3), 304–313.
- [41] Alyüz B., Veli, S. 2005. Ağır Metal İçeren Atık Su Arıtımında Kullanılan Düşük Maliyetli Adosorbentler’ Mühendislik ve Fen Bilimleri Dergisi, 23(3), 94-105.
- [42] Worayingyong, A., Sang-urai, S., Smith, M. F., Maensiri, S. and Seraphin, S. 2014. Effects of Cerium Dopant Concentration on Structural Properties and Photocatalytic Activity of Electrospun Ce-doped TiO2 Nanofibers’, Applied Physics A: Materials Science and Processing, 117(3), 1191–1201.
- [43] Cundy C. S. and Cox P. A. 2005. The Hydrothermal Synthesis of Zeolites: Precursors, İntermediates and Reaction Mechanism, Microporous Mesoporous Mater., 82(1–2), 1–78.
- [44] A.Yalcukand G.Dogdu Okcu, 2017. Biosorption of Indigo and Acid Yellow 2G (Y2G) dyes from aqueous solutions using a commercial powder form of ecologically pure Hawaiian Spirulina pacifica (HSP), Desalination and Water Treatment, 79, 386-399.
- [45] S. Hammami, M.A. Oturan, N. Oturan, N. Bellakhaland, M.Dachraoui, 2012 Comparative mineralization of textile dye indigo by photo-Fenton process and anodic oxidation using boron-doped diamond anode, Desalination and Water Treatment, 45, 297–304.
- [46] C.F. Couto, L.S. Marques, J. Balmant, A.P. de Oliveira Maia, W.G. Moravia, M. Cristinaand S. Amaral, 2018. Hybrid MF and membrane bioreactor process applied towards water and indigo reuse from denim textile wastewater, Environmental Technology, 39(6), 725-738.
- [47] A.M. Chiaand I.R. Musa, 2014. Effect of indigo dye effluent on the growth, biomass production and phenotypic plasticity of Scenedesmus quadricauda (Chlorococcales), Anais da Academia Brasileira de Ciências, 86(1), 419-428.
- [48] A. Trujillo-Ortega, S.A. Martinez Delgadillo, V.X. Mendoza-Escamilla, M. May-Lozanoand C. Barrera-Diaz, 2013. Modeling the removal of indigo dye from aqueous media in a sonoelectrochemical flow reactor, International Journal of Electrochemical Science, 8(3), 3876–3887.
- [49] Zolgharneinand M. Rastgordani, 2018. Optimization of simultaneous removal of binary mixture of indigo carmine and methyl orange dyes by cobalt hydroxide nano-particles through Taguchi method, Journal of Molecular Liquids, 262, 405-414.
- [50] Li, Z., 1999. Sorption Kinetics of Hexadecyl trimethylammonium on Natural Clinoptilolite, Langmuir, 15, 6438-6445.
- [51] Kumar, K. V., Porkodi, K. and Rocha, F., 2008. Langmuir–Hinshelwood kinetics – A theoretical study, Catalysis Communications, 9, 82–84.
- [52] Atheel Hassan Alwash, Ahmad Zuhairi Abdullah, and Norli Ismail, 2013. La Loaded TiO2 Encapsulated Zeolite Y Catalysts: Investigating the Characterization and Decolorization Process of Amaranth Dye, Journal of Engineering, 407167.
- [53] Nasrin Aghajari, Zahra Ghasemi, Habibollah Younesi, Nader Bahramifar, 2019. Synthesis, characterization and photocatalytic applicati on of Ag-doped Fe-ZSM-5@TiO2 nanocomposite for degradation of reactivered 195 (RR 195) in aqueous environment under sunlight irradiation, Journal of Environmental Health Science and Engineering, 17, 219–232.
- [54] Znad, Hussein, Abbas, Khalid, Hena, Sufia Awual, Awual, Md. Rabiul, 2018. Synthesis a novel multilamellar mesoporous TiO2/ZSM-5 for photo-catalytic degradation of methyl orange dye in aqueous media” Journal of Environmental Chemical Engineering, 6(1), 218-227.
- [55] Ghasemi Z, Younesi H, Zinatizadeh AA., 2016. Preparation, characterization and photocatalytic application of TiO2/Fe-ZSM-5 nanocomposite for the treatment of petroleum refinery wastewater: optimization of process parameters by response surface methodology, Chemosphere, 159, 552–64.
- [56] Ghasemi Z, Younesi H, Zinatizadeh AA., 2016. Kinetics and thermodynamics of photocatalytic degradation of organic pollutants in petroleum refinery wastewater over nano-TiO2 supported on Fe-ZSM-5, Journal of the Taiwan Institude Chemical Engineers, 65, 357–66.
- [57] N. Musee, 2011. Nanowastes and the environment: Potential new waste management paradigim, Environment International, 37(1), 112-128.